cellxgene_census.experimental.ml.pytorch.experiment_dataloader
- cellxgene_census.experimental.ml.pytorch.experiment_dataloader(datapipe: IterDataPipe, num_workers: int = 0, **dataloader_kwargs: Any) DataLoader
Factory method for
torch.utils.data.DataLoader. This method can be used to safely instantiate atorch.utils.data.DataLoaderthat works withcellxgene_census.experimental.ml.pytorch.ExperimentDataPipe, since some of thetorch.utils.data.DataLoaderconstructor parameters are not applicable when using atorchdata.datapipes.iter.IterDataPipe(shuffle,batch_size,sampler,batch_sampler,collate_fn).Deprecated since version Use: TileDB-SOMA-ML instead.
- Parameters:
datapipe – An
torchdata.datapipes.iter.IterDataPipe, which can be ancellxgene_census.experimental.ml.pytorch.ExperimentDataPipeor any othertorchdata.datapipes.iter.IterDataPipethat has been chained to thecellxgene_census.experimental.ml.pytorch.ExperimentDataPipe.num_workers – Number of worker processes to use for data loading. If
0, data will be loaded in the main process.**dataloader_kwargs – Additional keyword arguments to pass to the
torch.utils.data.DataLoaderconstructor, except forshuffle,batch_size,sampler,batch_sampler, andcollate_fn, which are not supported when usingcellxgene_census.experimental.ml.pytorch.ExperimentDataPipe.
- Returns:
- Raises:
ValueError – if any of the
shuffle,batch_size,sampler,batch_sampler, orcollate_fnparams are passed as keyword arguments.
Lifecycle
deprecated