Paper QA Emulation Tool
We here emulate the workflow of the PaperQA system by Andrew White (https://thewhitelab.org/). This is a Retrieval Augmented Generation (RAG) application using a Map-Reduce model where we query our embedded index for based on a question, we then write summaries for each returned document based on relevance to the underlying question. Finally, we synthesize each summary into an essay presented as an answer to the original question.
PaperQAEmulationTool
PaperQAEmulationTool (db:alhazen.utils.ceifns_db.Ceifns_LiteratureDb, llm :Optional[langchain_core.language_models.chat_model s.BaseChatModel]=None, slm:Optional[langchain_core. language_models.chat_models.BaseChatModel]=None, name:str='simple_qa_over_papers', description:str='Runs a Map-Reduce model where we write a short essay to answer a scientific question based on a set of supporting documents.', args_sche ma:Optional[Type[pydantic.v1.main.BaseModel]]=None, return_direct:bool=True, verbose:bool=False, callba cks:Union[List[langchain_core.callbacks.base.BaseCa llbackHandler],langchain_core.callbacks.base.BaseCa llbackManager,NoneType]=None, callback_manager:Opti onal[langchain_core.callbacks.base.BaseCallbackMana ger]=None, tags:Optional[List[str]]=None, metadata:Optional[Dict[str,Any]]=None, handle_tool_ error:Union[bool,str,Callable[[langchain_core.tools .ToolException],str],NoneType]=False, handle_valida tion_error:Union[bool,str,Callable[[pydantic.v1.err or_wrappers.ValidationError],str],NoneType]=False)
Write a short essay to answer a scientific question based documents from a preset collection.
PaperQAEmulationToolSchema
PaperQAEmulationToolSchema (question:str, n_sample_size:Optional[int]=None, n_summary_size:Optional[int]=None, collection_id:Optional[int]=None)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.