cellxgene_census.experimental.get_embedding
- cellxgene_census.experimental.get_embedding(census_version: str, embedding_uri: str, obs_soma_joinids: ndarray[Any, dtype[int64]] | Array, context: SOMATileDBContext | None = None) ndarray[Any, dtype[float32]]
Read cell (obs) embeddings and return as a dense
numpy.ndarray
. Any cells without an embedding will return NaN values.- Parameters:
census_version – The Census version tag, e.g.,
"2023-12-15"
. Used to verify that the contents of the embedding contain embedded cells from the same Census version.embedding_uri – The URI containing the embedding data.
obs_soma_joinids – The slice of the embedding to fetch and return.
context – A custom
tiledbsoma.SOMATileDBContext
which will be used to open the SOMA object. Optional, defaults toNone
.
- Returns:
A
numpy.ndarray
containing the embeddings. Embeddings are positionally indexed by theobs_soma_joinids
. In other words, the cell identified byobs_soma_joinids[i]
corresponds to theith
position in the returnednumpy.ndarray
.- Raises:
ValueError – if the Census and embedding are mismatched.
Lifecycle
experimental
Examples
>>> obs_somaids_to_fetch = np.array([10,11], dtype=np.int64) >>> emb = cellxgene_census.experimental.get_embedding('2023-12-15', embedding_uri, obs_somaids_to_fetch) >>> emb.shape (2, 200) >>> emb[:, 0:4] array([[ 0.02954102, 1.0390625 , -0.14550781, -0.40820312], [-0.00224304, 1.265625 , 0.05883789, -0.7890625 ]], dtype=float32)