czbenchmarks.tasks.single_cell.cross_species_label_prediction
Attributes
Classes
Base class for task inputs. |
|
Base class for task outputs. |
|
Task for cross-species label prediction evaluation. |
Module Contents
- czbenchmarks.tasks.single_cell.cross_species_label_prediction.logger
- class czbenchmarks.tasks.single_cell.cross_species_label_prediction.CrossSpeciesLabelPredictionTaskInput(/, **data: Any)[source]
Bases:
czbenchmarks.tasks.task.TaskInput
Base class for task inputs.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- labels: List[czbenchmarks.types.ListLike]
- organisms: List[czbenchmarks.datasets.types.Organism]
- aggregation_method: Literal['none', 'mean', 'median'] = 'mean'
- class czbenchmarks.tasks.single_cell.cross_species_label_prediction.CrossSpeciesLabelPredictionOutput(/, **data: Any)[source]
Bases:
czbenchmarks.tasks.task.TaskOutput
Base class for task outputs.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- class czbenchmarks.tasks.single_cell.cross_species_label_prediction.CrossSpeciesLabelPredictionTask(*, random_seed: int = RANDOM_SEED)[source]
Bases:
czbenchmarks.tasks.task.Task
Task for cross-species label prediction evaluation.
This task evaluates cross-species transfer by training classifiers on one species and testing on another species. It computes accuracy, F1, precision, recall, and AUROC for multiple classifiers (Logistic Regression, KNN, Random Forest).
The task can optionally aggregate cell-level embeddings to sample/donor level before running classification.
- Parameters:
random_seed (int) – Random seed for reproducibility
- display_name = 'cross-species label prediction'
- requires_multiple_datasets = True
- abstract compute_baseline(**kwargs)[source]
Set a baseline for cross-species label prediction.
This method is not implemented for cross-species prediction tasks as standard preprocessing workflows need to be applied per species.
- Raises:
NotImplementedError – Always raised as baseline is not implemented