czbenchmarks.tasks.sequential
Attributes
Classes
Pydantic model for Sequential Organization inputs. |
|
Output for sequential organization task. |
|
Task for evaluating sequential consistency in embeddings. |
Module Contents
- czbenchmarks.tasks.sequential.logger
- class czbenchmarks.tasks.sequential.SequentialOrganizationTaskInput(/, **data: Any)[source]
Bases:
czbenchmarks.tasks.task.TaskInput
Pydantic model for Sequential Organization inputs.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- obs: pandas.DataFrame
- input_labels: czbenchmarks.types.ListLike
- class czbenchmarks.tasks.sequential.SequentialOrganizationOutput(/, **data: Any)[source]
Bases:
czbenchmarks.tasks.task.TaskOutput
Output for sequential organization task.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- embedding: czbenchmarks.tasks.types.CellRepresentation
- class czbenchmarks.tasks.sequential.SequentialOrganizationTask(*, random_seed: int = RANDOM_SEED)[source]
Bases:
czbenchmarks.tasks.task.Task
Task for evaluating sequential consistency in embeddings.
This task computes sequential quality metrics for embeddings using time point labels. Evaluates how well embeddings preserve sequential organization between cells.
- Parameters:
random_seed (int) – Random seed for reproducibility
- display_name = 'Sequential Organization'
- description = 'Evaluate sequential consistency in embeddings using time point labels and k-NN based metrics.'
- input_model