czbenchmarks.tasks.integration
Attributes
Classes
Pydantic model for BatchIntegrationTask inputs. |
|
Output for batch integration task. |
|
Task for evaluating batch integration quality. |
Module Contents
- czbenchmarks.tasks.integration.logger
- class czbenchmarks.tasks.integration.BatchIntegrationTaskInput(/, **data: Any)[source]
Bases:
czbenchmarks.tasks.task.TaskInputPydantic model for BatchIntegrationTask inputs.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- batch_labels: Annotated[czbenchmarks.types.ListLike, Field(description='Batch labels for each cell (e.g. `obs.batch` from an AnnData object).')]
- labels: Annotated[czbenchmarks.types.ListLike, Field(description='Ground truth labels for metric calculation (e.g. `obs.cell_type` from an AnnData object).')]
- class czbenchmarks.tasks.integration.BatchIntegrationOutput(/, **data: Any)[source]
Bases:
czbenchmarks.tasks.task.TaskOutputOutput for batch integration task.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- cell_representation: czbenchmarks.tasks.types.CellRepresentation
- class czbenchmarks.tasks.integration.BatchIntegrationTask(*, random_seed: int = RANDOM_SEED)[source]
Bases:
czbenchmarks.tasks.task.TaskTask for evaluating batch integration quality.
This task computes metrics to assess how well different batches are integrated in the embedding space while preserving biological signals.
- display_name = 'Batch Integration'
- description = 'Evaluate batch integration quality using various integration metrics.'
- input_model
- baseline_model