czbenchmarks.tasks.embedding
Attributes
Classes
Pydantic model for EmbeddingTask inputs. |
|
Output for embedding task. |
|
Task for evaluating cell representation quality using labeled data. |
Module Contents
- czbenchmarks.tasks.embedding.logger
- class czbenchmarks.tasks.embedding.EmbeddingTaskInput(/, **data: Any)[source]
Bases:
czbenchmarks.tasks.task.TaskInput
Pydantic model for EmbeddingTask inputs.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- input_labels: czbenchmarks.types.ListLike
- class czbenchmarks.tasks.embedding.EmbeddingOutput(/, **data: Any)[source]
Bases:
czbenchmarks.tasks.task.TaskOutput
Output for embedding task.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- cell_representation: czbenchmarks.tasks.types.CellRepresentation
- class czbenchmarks.tasks.embedding.EmbeddingTask(*, random_seed: int = RANDOM_SEED)[source]
Bases:
czbenchmarks.tasks.task.Task
Task for evaluating cell representation quality using labeled data.
This task computes quality metrics for cell representations using ground truth labels. Currently supports silhouette score evaluation.
- Parameters:
random_seed (int) – Random seed for reproducibility
- display_name = 'Embedding'
- description = 'Evaluate cell representation quality using silhouette score with ground truth labels.'
- input_model