czbenchmarks.tasks.clustering
Attributes
Classes
Base class for task inputs. |
|
Output for clustering task. |
|
Task for evaluating clustering performance against ground truth labels. |
Module Contents
- czbenchmarks.tasks.clustering.logger
- class czbenchmarks.tasks.clustering.ClusteringTaskInput(/, **data: Any)[source]
Bases:
czbenchmarks.tasks.task.TaskInput
Base class for task inputs.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- obs: pandas.DataFrame
- input_labels: czbenchmarks.types.ListLike
- flavor: Literal['leidenalg', 'igraph'] = 'igraph'
- class czbenchmarks.tasks.clustering.ClusteringOutput(/, **data: Any)[source]
Bases:
czbenchmarks.tasks.task.TaskOutput
Output for clustering task.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- class czbenchmarks.tasks.clustering.ClusteringTask(*, random_seed: int = RANDOM_SEED)[source]
Bases:
czbenchmarks.tasks.task.Task
Task for evaluating clustering performance against ground truth labels.
This task performs clustering on embeddings and evaluates the results using multiple clustering metrics (ARI and NMI).
- Parameters:
random_seed (int) – Random seed for reproducibility
- display_name = 'Clustering'
- description = 'Evaluate clustering performance against ground truth labels using ARI and NMI metrics.'
- input_model