czbenchmarks.models.validators.base_model_validator
Attributes
Classes
Abstract base class for model validators. |
Module Contents
- czbenchmarks.models.validators.base_model_validator.logger
- class czbenchmarks.models.validators.base_model_validator.BaseModelValidator[source]
Bases:
abc.ABC
Abstract base class for model validators.
Defines the interface for validating datasets against model requirements. Validators ensure datasets meet model-specific requirements like: - Compatible data types - Required metadata fields - Organism compatibility - Feature name formats
Each validator must: 1. Define a dataset_type class variable 2. Define a model_type class variable or model_name property 3. Implement _validate_dataset, inputs, and outputs
- dataset_type: ClassVar[Type[czbenchmarks.datasets.BaseDataset]]
- model_type: ClassVar[czbenchmarks.models.types.ModelType]
- classmethod __init_subclass__() None [source]
Validate that subclasses define required class variables and follow naming conventions.
- Raises:
TypeError – If required class variables are missing or invalid
ValueError – If class naming doesn’t follow conventions
- property inputs: Set[czbenchmarks.datasets.DataType]
- Abstractmethod:
Required input data types this model requires.
- Returns:
Set of required DataType enums
- property outputs: Set[czbenchmarks.datasets.DataType]
- Abstractmethod:
Output data types produced by this model.
- Returns:
Set of output DataType enums
- validate_dataset(dataset: czbenchmarks.datasets.BaseDataset)[source]
Validate a dataset meets all model requirements.
Checks: 1. Dataset type matches model requirements 2. Required inputs are available 3. Model-specific validation rules
- Parameters:
dataset – Dataset to validate
- Raises:
ValueError – If validation fails