czbenchmarks.metrics.implementations
Implementation of metric functions and registration with the registry.
This file defines and registers various metrics with a global MetricRegistry. Metrics are categorized into the following types: - Clustering metrics (e.g., Adjusted Rand Index, Normalized Mutual Information) - Embedding quality metrics (e.g., Silhouette Score) - Integration metrics (e.g., Entropy Per Cell, Batch Silhouette) - Perturbation metrics (e.g., Mean Squared Error, Pearson Correlation) - Label prediction metrics (e.g., Mean Fold Accuracy, Mean Fold F1 Score)
Each metric is registered with: - A unique MetricType identifier. - The function implementing the metric. - Required arguments for the metric function. - A description of the metric’s purpose. - Tags categorizing the metric.
Attributes
Functions
|
Wrapper for spearmanr that returns only the correlation coefficient. |
|
Wrapper for precision_score with zero_division=0 to suppress warnings. |
|
Wrapper for recall_score with zero_division=0 to suppress warnings. |
|
Wrapper for f1_score with zero_division=0 to suppress warnings. |
Module Contents
- czbenchmarks.metrics.implementations.spearman_correlation(a, b)[source]
Wrapper for spearmanr that returns only the correlation coefficient.
- czbenchmarks.metrics.implementations.precision_score_zero_division(y_true, y_pred, **kwargs)[source]
Wrapper for precision_score with zero_division=0 to suppress warnings.
- czbenchmarks.metrics.implementations.recall_score_zero_division(y_true, y_pred, **kwargs)[source]
Wrapper for recall_score with zero_division=0 to suppress warnings.
- czbenchmarks.metrics.implementations.f1_score_zero_division(y_true, y_pred, **kwargs)[source]
Wrapper for f1_score with zero_division=0 to suppress warnings.
- czbenchmarks.metrics.implementations.metrics_registry