czbenchmarks.datasets.single_cell_perturbation
Attributes
Classes
Single cell dataset with perturbation data, containing control and |
Functions
|
Sample a percentage of genes for masking for each condition from a |
Module Contents
- czbenchmarks.datasets.single_cell_perturbation.logger
- czbenchmarks.datasets.single_cell_perturbation.sample_de_genes(de_results: pandas.DataFrame, percent_genes_to_mask: float, min_de_genes_to_mask: int, condition_col: str, gene_col: str, seed: int = RANDOM_SEED) Dict[str, List[str]] [source]
Sample a percentage of genes for masking for each condition from a differential expression results dataframe.
- Parameters:
de_results (pd.DataFrame) – Differential expression results dataframe.
percent_genes_to_mask (float) – Percentage of genes to mask.
min_de_genes_to_mask (int) – Minimum number of masked differentially expressed genes. If not met, no genes are masked.
condition_col (str) – Column name for the condition.
gene_col (str) – Column name for the gene names.
seed (int) – Random seed.
- Returns:
Dictionary that maps each condition to a list of genes to be masked for that condition.
- Return type:
- class czbenchmarks.datasets.single_cell_perturbation.SingleCellPerturbationDataset(path: pathlib.Path, organism: czbenchmarks.datasets.types.Organism, condition_key: str = 'condition', control_name: str = 'ctrl', de_gene_col: str = 'gene', de_metric_col: str = 'logfoldchange', de_pval_col: str = 'pval_adj', percent_genes_to_mask: float = 0.5, min_de_genes_to_mask: int = 5, pval_threshold: float = 0.0001, min_logfoldchange: float = 1.0, task_inputs_dir: pathlib.Path | None = None, random_seed: int = RANDOM_SEED, target_conditions_override: Dict[str, List[str]] | None = None)[source]
Bases:
czbenchmarks.datasets.single_cell.SingleCellDataset
Single cell dataset with perturbation data, containing control and perturbed cells.
This class extends SingleCellDataset to handle datasets with perturbation data. It includes functionality for validating condition formats, and perturbation data with matched control cells.
Input data requirements:
H5AD file containing single-cell gene expression data.
- Must have a column
condition_key
inadata.obs
specifying control and perturbed conditions.
- Must have a column
Condition format must be one of: -
{control_name}
for control samples. -{perturb}
for a single perturbation.
- de_results
Differential expression results calculated on ground truth data using matched controls.
- Type:
pd.DataFrame
- target_conditions_dict
Dictionary that maps each condition to a list of masked genes for that condition.
- control_cells_ids
Dictionary mapping each condition to a dictionary of treatment cell barcodes (keys) to matched control cell barcodes (values). It is used primarily for creation of differential expression results in data processing and may be removed in a future release.
- Type:
Instantiate a SingleCellPerturbationDataset instance.
- Parameters:
path (Path) – Path to the dataset file.
organism (Organism) – Enum value indicating the organism.
condition_key (str) – Key for the column in adata.obs specifying conditions. Defaults to “condition”.
control_name (str) – Name of the control condition. Defaults to “ctrl”.
de_gene_col (str) – Column name for the names of genes which are differentially expressed in the differential expression results. Defaults to “gene”.
de_metric_col (str) – Column name for the metric of the differential expression results. Defaults to “logfoldchange”.
de_pval_col (str) – Column name for the p-value of the differential expression results. Defaults to “pval_adj”.
percent_genes_to_mask (float) – Percentage of genes to mask. Default is 0.5.
min_de_genes_to_mask (int) – Minimum number of differentially expressed genes required to mask that condition. If not met, no genes are masked. Default is 5.
pval_threshold (float) – P-value threshold for differential expression. Default is 1e-4.
min_logfoldchange (float) – Minimum log-fold change for differential expression. Default is 1.0.
task_inputs_dir (Optional[Path]) – Path to the directory containing the task inputs. Default is None. If not provided, a default path will be used.
random_seed (int) – Random seed for reproducibility.
target_conditions_override (Optional[Dict[str, List[str]]]) – Dictionary that maps a target condition to a list of genes that the user specified to be masked. This overrides the default sampling of genes for masking in target_conditions_dict. Default is None.
- property de_results: pandas.DataFrame
- UNS_DE_RESULTS_KEY = 'de_results'
- UNS_CONTROL_MAP_KEY = 'control_cells_map'
- UNS_TARGET_GENES_KEY = 'target_conditions_dict'
- UNS_METRIC_COL_KEY = 'metric_column'
- UNS_CONFIG_KEY = 'config'
- UNS_RANDOM_SEED_KEY = 'random_seed'
- random_seed = 42
- condition_key = 'condition'
- control_name = 'ctrl'
- deg_test_name = 'wilcoxon'
- de_gene_col = 'gene'
- de_metric_col = 'logfoldchange'
- de_pval_col = 'pval_adj'
- target_conditions_override = None
- percent_genes_to_mask = 0.5
- min_de_genes_to_mask = 5
- pval_threshold = 0.0001
- min_logfoldchange = 1.0
- load_and_filter_deg_results()[source]
Load and filter differential expression results from adata.uns. - Enforces that de_pval_col and de_metric_col are present in the dataframe and are not null. - Filters out rows where the p-value is greater than the pval_threshold. - Filters out rows where the metric is less than the min_logfoldchange. - Returns the filtered dataframe.
- Returns:
Differential expression results dataframe after filtering.
- Return type:
pd.DataFrame
- load_data() None [source]
Load the dataset and populates the perturbation truth data. - Validates the presence of required keys and values in adata:
condition_key in adata.obs
control_name present in adata.obs[condition_key]
de_results_{self.deg_test_name} in adata.uns
control_cells_map in adata.uns
- Loads and filters differential expression results from adata.uns,
keeping only genes whose differential expression meets user-defined thresholds.
Populates the target_conditions_dict attribute
- get_indices_for(condition: str, treated_barcodes: List[str] | None = None) tuple[numpy.ndarray, numpy.ndarray] [source]
- store_task_inputs() pathlib.Path [source]
Store all task inputs into a single .h5ad file.
The AnnData object contains in uns: - target_conditions_dict - de_results (DataFrame with required columns) - control_cells_ids
- Returns:
Path to the task inputs directory.
- Return type:
Path