{
"cells": [
{
"cell_type": "markdown",
"id": "63f90e61-f6a1-440f-8745-b044e79e3261",
"metadata": {},
"source": [
"## Demonstration of Single-Cell Benchmark Tasks\n",
"### Using cz-benchmarks to evaluate a model on multiple tasks\n",
"\n",
"This notebook demonstrates how to leverage the `czbenchmarks` library to evaluate single-cell models on multiple benchmark tasks. `czbenchmarks` is a Python library designed to streamline benchmarking for single-cell analysis tasks, such as clustering, embedding, and cell type classification. \n",
"\n",
"\n",
"For demonstration purposes, we use `scVI`and showing performance of the published model weights for each of the following tasks: \n",
"* `Clustering`\n",
"* `Embedding`\n",
"* `Cell Type Classification`\n",
"\n",
"### Step 1: Setup and Imports\n",
"\n",
"This step sets up the environment and imports necessary libraries for benchmarking single-cell models. Ensure that the virtual environment is created and dependencies are installed before proceeding."
]
},
{
"cell_type": "code",
"execution_count": 74,
"id": "75fb3046-dce1-4eac-bb20-0a6448f88b86",
"metadata": {},
"outputs": [],
"source": [
"# # Create isolated virtual environment for scVI and czbenchmarks (run once)\n",
"\n",
"# !python3 -m venv .venv_scvi\n",
"\n",
"# # Install model required packages\n",
"# !.venv_scvi/bin/python -m pip install --upgrade pip\n",
"# !.venv_scvi/bin/python -m pip install ipykernel numpy pandas scvi-tools tabulate matplotlib seaborn\n",
"\n",
"# # Register the new environment as a Jupyter kernel (if not already registered)\n",
"# !.venv_scvi/bin/python -m ipykernel install --user --name venv_scvi --display-name \"Python (.venv_scvi)\"\n",
"\n",
"# print(\"Virtual environment '.venv_scvi' created, dependencies installed, and kernel registered.\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9d6c4dd6-c757-49f2-abbe-11497a0dfce1",
"metadata": {},
"outputs": [],
"source": [
"from czbenchmarks.datasets import load_dataset\n",
"from czbenchmarks.datasets.single_cell_labeled import SingleCellLabeledDataset\n",
"from czbenchmarks.tasks import (\n",
" ClusteringTask,\n",
" EmbeddingTask,\n",
" MetadataLabelPredictionTask,\n",
")\n",
"from czbenchmarks.tasks.clustering import ClusteringTaskInput\n",
"from czbenchmarks.tasks.embedding import EmbeddingTaskInput\n",
"from czbenchmarks.tasks.label_prediction import MetadataLabelPredictionTaskInput\n",
"\n",
"# Model specific imports\n",
"import scvi # other imports can be used as required by model\n",
"import functools\n",
"\n",
"# --- Visualization Imports ---\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"\n",
"# Notebook config imports\n",
"import warnings\n",
"\n",
"warnings.simplefilter(\"ignore\")\n",
"sns.set_theme(style=\"whitegrid\")\n",
"\n",
"\n",
"# utility functions\n",
"def summarize_results(results, source):\n",
" \"\"\"Summarize results into a DataFrame for easy comparison.\"\"\"\n",
" return pd.DataFrame(\n",
" {\n",
" \"Source\": source,\n",
" \"Metric\": [r.metric_type.name for r in results],\n",
" \"Value\": [r.value for r in results],\n",
" }\n",
" )\n",
"\n",
"\n",
"def plot_umap(embedding, labels, title):\n",
" import scanpy as sc\n",
"\n",
" adata_vis = sc.AnnData(embedding)\n",
" adata_vis.obs[\"cell_type\"] = labels.values.astype(str)\n",
" sc.pp.neighbors(adata_vis, use_rep=\"X\")\n",
" sc.tl.umap(adata_vis)\n",
" sc.pl.umap(adata_vis, color=\"cell_type\", title=title, frameon=False, show=False)\n",
"\n",
"\n",
"def plot_comparison(data, title, ylabel, palette):\n",
" plt.figure(figsize=(10, 5))\n",
" sns.barplot(data=data, x=\"Metric\", y=\"Value\", hue=\"Source\", palette=palette)\n",
" plt.title(title, fontsize=14)\n",
" plt.ylabel(ylabel, fontsize=10)\n",
" plt.xlabel(\"Metric\", fontsize=10)\n",
" plt.xticks(rotation=0, ha=\"right\")\n",
" plt.legend(title=\"Source\")\n",
" plt.tight_layout()\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"id": "548178de-86f1-4066-82eb-770c365dc3af",
"metadata": {},
"source": [
"### Step 2: Load a Dataset\n",
"\n",
"Load the pre-configured `tsv2_prostate` dataset. The library handles automatic download, caching, and loading as a `SingleCellLabeledDataset` for streamlined reuse.\n",
"\n",
"**Loaded dataset provides:**\n",
"- `dataset.adata`: AnnData object with gene expression data.\n",
"- `dataset.labels`: pandas Series of cell type labels."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "34e11f12-12d7-4a20-a2fb-0f96a45fba1f",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:czbenchmarks.file_utils:File already exists in cache: /Users/sgupta/.cz-benchmarks/datasets/homo_sapiens_10df7690-6d10-4029-a47e-0f071bb2df83_Prostate_v2_curated.h5ad\n",
"INFO:czbenchmarks.datasets.single_cell:Loading dataset from /Users/sgupta/.cz-benchmarks/datasets/homo_sapiens_10df7690-6d10-4029-a47e-0f071bb2df83_Prostate_v2_curated.h5ad in memory mode.\n"
]
},
{
"data": {
"text/plain": [
"TSP25_Prostate_NA_10X_1_1_AAACCCAAGTGGTTAA endothelial cell\n",
"TSP25_Prostate_NA_10X_1_1_AAACCCACATGCACTA luminal cell of prostate epithelium\n",
"TSP25_Prostate_NA_10X_1_1_AAACGAAGTTCTGACA endothelial cell\n",
"TSP25_Prostate_NA_10X_1_1_AAACGCTTCTACCCAC erythrocyte\n",
"TSP25_Prostate_NA_10X_1_1_AAAGAACCAGTTGTCA smooth muscle cell\n",
" ... \n",
"TSP25_Prostate_NA_10X_1_2_TTTATGCTCTTGGTCC fibroblast\n",
"TSP25_Prostate_NA_10X_1_2_TTTCACAAGATCGGTG basal cell of prostate epithelium\n",
"TSP25_Prostate_NA_10X_1_2_TTTCACAGTGCCTTCT fibroblast\n",
"TSP25_Prostate_NA_10X_1_2_TTTCATGCAATAGTAG CD8-positive, alpha-beta T cell\n",
"TSP25_Prostate_NA_10X_1_2_TTTCCTCAGGTGATCG fibroblast\n",
"Name: cell_type, Length: 2044, dtype: category\n",
"Categories (14, object): ['fibroblast', 'T cell', 'mast cell', 'endothelial cell', ..., 'neutrophil', 'mature NK T cell', 'luminal cell of prostate epithelium', 'basal cell of prostate epithelium']"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# The 'dataset' object is a validated AnnData wrapper, ensuring efficient downstream processing.\n",
"dataset: SingleCellLabeledDataset = load_dataset(\"tsv2_prostate\")\n",
"dataset.adata\n",
"dataset.labels"
]
},
{
"cell_type": "markdown",
"id": "7f803094",
"metadata": {},
"source": [
"#### Optionally Transform Data\n",
"\n",
"After loading the dataset, you may need to transform the data to meet the requirements of your model."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "7da9bbce",
"metadata": {},
"outputs": [],
"source": [
"required_obs_keys = [\"dataset_id\", \"assay\", \"suspension_type\", \"donor_id\"]\n",
"adata = dataset.adata.copy()\n",
"\n",
"batch_keys = required_obs_keys\n",
"adata.obs[\"batch\"] = functools.reduce(\n",
" lambda a, b: a + b, [adata.obs[c].astype(str) for c in batch_keys]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "23e4b045-5c5b-4277-9bc5-98d4f3926dcd",
"metadata": {},
"source": [
"### Step 3: Model Inference\n",
"Obtain the model weights associated with the pre-trained scVI model to use as a reference. Generate cell embeddings for evaluation within the benchmarking framework.\n",
"\n",
"---\n",
"> **Note:** Ensure the model weights directory exists and contains the required `model.pt` file. If the weights are missing, refer to `examples/scvi_model_dev_workflow.ipynb` for instructions on obtaining them."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0bd77a63-74a0-4d0f-8aba-ba2cae56cb08",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[34mINFO \u001b[0m File czbenchmarks_scvi_model/model.pt already downloaded \n",
"\u001b[34mINFO \u001b[0m Found \u001b[1;36m44.05\u001b[0m% reference vars in query data. \n",
"\u001b[34mINFO \u001b[0m File czbenchmarks_scvi_model/model.pt already downloaded \n",
"Generated scVI embedding with shape: (2044, 50)\n"
]
}
],
"source": [
"# Ensure model weights directory exists and model.pt file is present. Check `examples/scvi_model_dev_workflow.ipynb` for details on how to get the model weights.\n",
"model_weights_dir = \"czbenchmarks_scvi_model\"\n",
"scvi.model.SCVI.prepare_query_anndata(adata, model_weights_dir)\n",
"scvi_model = scvi.model.SCVI.load_query_data(adata, model_weights_dir)\n",
"scvi_model.is_trained = True\n",
"\n",
"# Now, generate the latent representation (the embedding)\n",
"model_output = scvi_model.get_latent_representation()\n",
"print(f\"Generated scVI embedding with shape: {model_output.shape}\")"
]
},
{
"cell_type": "markdown",
"id": "89d4a60a",
"metadata": {},
"source": [
"### Step 4. Benchmark Tasks\n",
"\n",
"Evaluate the scVI model and PCA baseline across clustering, embedding, and cell type classification tasks."
]
},
{
"cell_type": "markdown",
"id": "aa27b5d4-cd94-4d17-a5aa-c071287acef3",
"metadata": {},
"source": [
"#### Clustering Task\n",
"\n",
"Evaluate clustering performance using metrics such as Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI)."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "98829130-4a6c-44bf-b2c4-35f3218519e4",
"metadata": {},
"outputs": [],
"source": [
"clustering_task = ClusteringTask()\n",
"clustering_task_input = ClusteringTaskInput(\n",
" obs=dataset.adata.obs, input_labels=dataset.labels\n",
")\n",
"\n",
"# Run clustering task\n",
"clustering_results = clustering_task.run(\n",
" cell_representation=model_output, task_input=clustering_task_input\n",
")\n",
"\n",
"# Compute baseline\n",
"expression_data = dataset.adata.X\n",
"clustering_baseline = clustering_task.compute_baseline(expression_data)\n",
"clustering_baseline_results = clustering_task.run(\n",
" cell_representation=clustering_baseline, task_input=clustering_task_input\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "917eb14c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clustering Results Comparison:\n"
]
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
"
\n",
" \n",
" \n",
" \n",
" Source | \n",
" scVI Model | \n",
" scVI Model | \n",
" PCA Baseline | \n",
" PCA Baseline | \n",
"
\n",
" \n",
" Metric | \n",
" ADJUSTED_RAND_INDEX | \n",
" NORMALIZED_MUTUAL_INFO | \n",
" ADJUSTED_RAND_INDEX | \n",
" NORMALIZED_MUTUAL_INFO | \n",
"
\n",
" \n",
" Value | \n",
" 0.71937 | \n",
" 0.86654 | \n",
" 0.642149 | \n",
" 0.833138 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 0 1 2 \\\n",
"Source scVI Model scVI Model PCA Baseline \n",
"Metric ADJUSTED_RAND_INDEX NORMALIZED_MUTUAL_INFO ADJUSTED_RAND_INDEX \n",
"Value 0.71937 0.86654 0.642149 \n",
"\n",
" 3 \n",
"Source PCA Baseline \n",
"Metric NORMALIZED_MUTUAL_INFO \n",
"Value 0.833138 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Display Clustering Results\n",
"df_clustering_model = summarize_results(clustering_results, \"scVI Model\")\n",
"df_clustering_baseline = summarize_results(clustering_baseline_results, \"PCA Baseline\")\n",
"df_clustering_compare = pd.concat(\n",
" [df_clustering_model, df_clustering_baseline], ignore_index=True\n",
")\n",
"print(\"Clustering Results Comparison:\")\n",
"display(df_clustering_compare.T)"
]
},
{
"cell_type": "markdown",
"id": "31ee6d4f",
"metadata": {},
"source": [
"#### Embedding Task\n",
"\n",
"Evaluate embedding quality using silhouette scores to measure separation of cell types in the latent space."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "e13bed5e-def6-4b2e-b306-ea7b158e43e8",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:2025-09-16 10:10:59,113:jax._src.xla_bridge:822: Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: dlopen(libtpu.so, 0x0001): tried: 'libtpu.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OSlibtpu.so' (no such file), '/opt/homebrew/lib/libtpu.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OS/opt/homebrew/lib/libtpu.so' (no such file), '/usr/lib/libtpu.so' (no such file, not in dyld cache), 'libtpu.so' (no such file)\n",
"INFO:jax._src.xla_bridge:Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: dlopen(libtpu.so, 0x0001): tried: 'libtpu.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OSlibtpu.so' (no such file), '/opt/homebrew/lib/libtpu.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OS/opt/homebrew/lib/libtpu.so' (no such file), '/usr/lib/libtpu.so' (no such file, not in dyld cache), 'libtpu.so' (no such file)\n"
]
}
],
"source": [
"embedding_task = EmbeddingTask()\n",
"embedding_task_input = EmbeddingTaskInput(input_labels=dataset.labels)\n",
"\n",
"# Run embedding task\n",
"embedding_results_model = embedding_task.run(model_output, embedding_task_input)\n",
"\n",
"# Compute baseline\n",
"embedding_baseline = embedding_task.compute_baseline(expression_data)\n",
"embedding_results_baseline = embedding_task.run(\n",
" embedding_baseline, embedding_task_input\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "ae8406d2",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Embedding Results Comparison:\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Source | \n",
" Metric | \n",
" Value | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" scVI Model | \n",
" SILHOUETTE_SCORE | \n",
" 0.627913 | \n",
"
\n",
" \n",
" 1 | \n",
" PCA Baseline | \n",
" SILHOUETTE_SCORE | \n",
" 0.650182 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Source Metric Value\n",
"0 scVI Model SILHOUETTE_SCORE 0.627913\n",
"1 PCA Baseline SILHOUETTE_SCORE 0.650182"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Display Embedding Results\n",
"df_embedding_model = summarize_results(embedding_results_model, \"scVI Model\")\n",
"df_embedding_baseline = summarize_results(embedding_results_baseline, \"PCA Baseline\")\n",
"df_embedding_compare = pd.concat(\n",
" [df_embedding_model, df_embedding_baseline], ignore_index=True\n",
")\n",
"\n",
"print(\"Embedding Results Comparison:\")\n",
"display(df_embedding_compare)"
]
},
{
"cell_type": "markdown",
"id": "17c3ffda",
"metadata": {},
"source": [
"#### Cell Type Classification Task\n",
"\n",
"Evaluate cell type classification performance using accuracy and F1 scores."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "5dc5765c",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:czbenchmarks.tasks.label_prediction:Starting prediction task for labels\n",
"INFO:czbenchmarks.tasks.label_prediction:Initial data shape: (2044, 50), labels shape: (2044,)\n",
"INFO:czbenchmarks.tasks.utils:Label composition (cell_type):\n",
"INFO:czbenchmarks.tasks.utils:Total classes before filtering: 14\n",
"INFO:czbenchmarks.tasks.utils:Total classes after filtering (min_class_size=10): 13\n",
"INFO:czbenchmarks.tasks.label_prediction:After filtering: (2043, 50) samples remaining\n",
"INFO:czbenchmarks.tasks.label_prediction:Found 13 classes, using macro averaging for metrics\n",
"INFO:czbenchmarks.tasks.label_prediction:Using 5-fold cross validation with random_seed 42\n",
"INFO:czbenchmarks.tasks.label_prediction:Created classifiers: ['lr', 'knn', 'rf']\n",
"INFO:czbenchmarks.tasks.label_prediction:Running cross-validation for lr...\n",
"INFO:czbenchmarks.tasks.label_prediction:Running cross-validation for knn...\n",
"INFO:czbenchmarks.tasks.label_prediction:Running cross-validation for rf...\n",
"INFO:czbenchmarks.tasks.label_prediction:Completed cross-validation for all classifiers\n",
"INFO:czbenchmarks.tasks.label_prediction:Computing final metrics...\n",
"INFO:czbenchmarks.tasks.label_prediction:Starting prediction task for labels\n",
"INFO:czbenchmarks.tasks.label_prediction:Initial data shape: (2044, 21808), labels shape: (2044,)\n",
"INFO:czbenchmarks.tasks.utils:Label composition (cell_type):\n",
"INFO:czbenchmarks.tasks.utils:Total classes before filtering: 14\n",
"INFO:czbenchmarks.tasks.utils:Total classes after filtering (min_class_size=10): 13\n",
"INFO:czbenchmarks.tasks.label_prediction:After filtering: (2043, 21808) samples remaining\n",
"INFO:czbenchmarks.tasks.label_prediction:Found 13 classes, using macro averaging for metrics\n",
"INFO:czbenchmarks.tasks.label_prediction:Using 5-fold cross validation with random_seed 42\n",
"INFO:czbenchmarks.tasks.label_prediction:Created classifiers: ['lr', 'knn', 'rf']\n",
"INFO:czbenchmarks.tasks.label_prediction:Running cross-validation for lr...\n",
"INFO:czbenchmarks.tasks.label_prediction:Running cross-validation for knn...\n",
"INFO:czbenchmarks.tasks.label_prediction:Running cross-validation for rf...\n",
"INFO:czbenchmarks.tasks.label_prediction:Completed cross-validation for all classifiers\n",
"INFO:czbenchmarks.tasks.label_prediction:Computing final metrics...\n"
]
}
],
"source": [
"prediction_task = MetadataLabelPredictionTask()\n",
"prediction_task_input = MetadataLabelPredictionTaskInput(labels=dataset.labels)\n",
"\n",
"# Run prediction task\n",
"prediction_results_model = prediction_task.run(model_output, prediction_task_input)\n",
"\n",
"# Compute baseline\n",
"prediction_baseline = prediction_task.compute_baseline(expression_data)\n",
"prediction_results_baseline = prediction_task.run(\n",
" prediction_baseline, prediction_task_input\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "6a636b43",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prediction Results Comparison:\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
" 6 | \n",
" 7 | \n",
" 8 | \n",
" 9 | \n",
" ... | \n",
" 30 | \n",
" 31 | \n",
" 32 | \n",
" 33 | \n",
" 34 | \n",
" 35 | \n",
" 36 | \n",
" 37 | \n",
" 38 | \n",
" 39 | \n",
"
\n",
" \n",
" \n",
" \n",
" Source | \n",
" scVI Model | \n",
" scVI Model | \n",
" scVI Model | \n",
" scVI Model | \n",
" scVI Model | \n",
" scVI Model | \n",
" scVI Model | \n",
" scVI Model | \n",
" scVI Model | \n",
" scVI Model | \n",
" ... | \n",
" PCA Baseline | \n",
" PCA Baseline | \n",
" PCA Baseline | \n",
" PCA Baseline | \n",
" PCA Baseline | \n",
" PCA Baseline | \n",
" PCA Baseline | \n",
" PCA Baseline | \n",
" PCA Baseline | \n",
" PCA Baseline | \n",
"
\n",
" \n",
" Metric | \n",
" MEAN_FOLD_ACCURACY | \n",
" MEAN_FOLD_F1_SCORE | \n",
" MEAN_FOLD_PRECISION | \n",
" MEAN_FOLD_RECALL | \n",
" MEAN_FOLD_AUROC | \n",
" MEAN_FOLD_ACCURACY | \n",
" MEAN_FOLD_F1_SCORE | \n",
" MEAN_FOLD_PRECISION | \n",
" MEAN_FOLD_RECALL | \n",
" MEAN_FOLD_AUROC | \n",
" ... | \n",
" MEAN_FOLD_ACCURACY | \n",
" MEAN_FOLD_F1_SCORE | \n",
" MEAN_FOLD_PRECISION | \n",
" MEAN_FOLD_RECALL | \n",
" MEAN_FOLD_AUROC | \n",
" MEAN_FOLD_ACCURACY | \n",
" MEAN_FOLD_F1_SCORE | \n",
" MEAN_FOLD_PRECISION | \n",
" MEAN_FOLD_RECALL | \n",
" MEAN_FOLD_AUROC | \n",
"
\n",
" \n",
" Value | \n",
" 0.958237 | \n",
" 0.905656 | \n",
" 0.914681 | \n",
" 0.905266 | \n",
" 0.992342 | \n",
" 0.964759 | \n",
" 0.918456 | \n",
" 0.922952 | \n",
" 0.919351 | \n",
" 0.997509 | \n",
" ... | \n",
" 0.453757 | \n",
" 0.367207 | \n",
" 0.566225 | \n",
" 0.370051 | \n",
" 0.738066 | \n",
" 0.96476 | \n",
" 0.889146 | \n",
" 0.945736 | \n",
" 0.876686 | \n",
" 0.997666 | \n",
"
\n",
" \n",
"
\n",
"
3 rows × 40 columns
\n",
"
"
],
"text/plain": [
" 0 1 2 \\\n",
"Source scVI Model scVI Model scVI Model \n",
"Metric MEAN_FOLD_ACCURACY MEAN_FOLD_F1_SCORE MEAN_FOLD_PRECISION \n",
"Value 0.958237 0.905656 0.914681 \n",
"\n",
" 3 4 5 \\\n",
"Source scVI Model scVI Model scVI Model \n",
"Metric MEAN_FOLD_RECALL MEAN_FOLD_AUROC MEAN_FOLD_ACCURACY \n",
"Value 0.905266 0.992342 0.964759 \n",
"\n",
" 6 7 8 \\\n",
"Source scVI Model scVI Model scVI Model \n",
"Metric MEAN_FOLD_F1_SCORE MEAN_FOLD_PRECISION MEAN_FOLD_RECALL \n",
"Value 0.918456 0.922952 0.919351 \n",
"\n",
" 9 ... 30 31 \\\n",
"Source scVI Model ... PCA Baseline PCA Baseline \n",
"Metric MEAN_FOLD_AUROC ... MEAN_FOLD_ACCURACY MEAN_FOLD_F1_SCORE \n",
"Value 0.997509 ... 0.453757 0.367207 \n",
"\n",
" 32 33 34 \\\n",
"Source PCA Baseline PCA Baseline PCA Baseline \n",
"Metric MEAN_FOLD_PRECISION MEAN_FOLD_RECALL MEAN_FOLD_AUROC \n",
"Value 0.566225 0.370051 0.738066 \n",
"\n",
" 35 36 37 \\\n",
"Source PCA Baseline PCA Baseline PCA Baseline \n",
"Metric MEAN_FOLD_ACCURACY MEAN_FOLD_F1_SCORE MEAN_FOLD_PRECISION \n",
"Value 0.96476 0.889146 0.945736 \n",
"\n",
" 38 39 \n",
"Source PCA Baseline PCA Baseline \n",
"Metric MEAN_FOLD_RECALL MEAN_FOLD_AUROC \n",
"Value 0.876686 0.997666 \n",
"\n",
"[3 rows x 40 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Display Prediction Results\n",
"df_prediction_model = summarize_results(prediction_results_model, \"scVI Model\")\n",
"df_prediction_baseline = summarize_results(prediction_results_baseline, \"PCA Baseline\")\n",
"df_prediction_compare = pd.concat(\n",
" [df_prediction_model, df_prediction_baseline], ignore_index=True\n",
")\n",
"\n",
"print(\"Prediction Results Comparison:\")\n",
"display(df_prediction_compare.T)"
]
},
{
"cell_type": "markdown",
"id": "09c58d6c",
"metadata": {},
"source": [
"### Visualization\n",
"\n",
"Generate bar plots and UMAP visualizations to compare model and baseline performance."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "9b917370",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"... storing 'cell_type' as categorical\n",
"... storing 'cell_type' as categorical\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyQAAAGZCAYAAAB4wfWGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAxadJREFUeJzsnQd4FFUXhr8t6b0nhJAQaui9KN0CCNixgGBBERtW7F35LdgVCyqCYFdUmgVQUJDeew8lhPTes7v/892wy26y6T05L88+2Z25M3PnzpKc755yNSaTyQRBEARBEARBEIR6QFsfFxUEQRAEQRAEQSAiSARBEARBEARBqDdEkAiCIAiCIAiCUG+IIBEEQRAEQRAEod4QQSIIgiAIgiAIQr0hgkQQBEEQBEEQhHpDBIkgCIIgCIIgCPWGCBJBEARBEARBEOoNESSCIAiCIAiCINQbIkiERsGkSZPUqzRGjBiBxx9/3KZ9hw4dcMMNN5R6zIMPPqjaWB9nDY/l/j/++KPUPnG/9atLly4YNmwYXnjhBaSlpaEuGTlyJMaMGVPq/vz8fPTv3x+PPvqo+vz++++rPpeFuU1Zr7y8vGr1m+PP51dbVOT8GzduVPfCn2TRokXq8+nTp2utX4IgCIIgFKE/91MQmhxarRY7duzA2bNnERwcbLMvOzsbf//9d6nHHjt2DNu3b0f79u3x7bffKmPfHp06dcJzzz1n+VxQUIC9e/firbfewv79+/HNN99Ao9GgLrj66qst142Kiiqxf/Xq1UhNTcX48eMrfe7vvvuu1H2Ojo5oalBU8p4DAwPruyuCIAiC0OQRQSI0WSgWjhw5gt9//x233HKLzT6KERcXF3h6eto9ljPkoaGhuPPOO/HII4/gxIkTCA8PL9HO3d0dPXr0sNnWt29fZGVl4b333sPOnTtL7K8trrzySrz77rtYvHixXUHy888/IyIiQvWvstTVPTQUfH191UsQBEEQhNpHQraEJourqyuGDh2qBElxli9frrween1JTW4wGPDLL79g+PDhuPjii9V5yvIQ2IOhW+TMmTM2IUDmkCB75Obm4vnnn8eQIUPU8aNGjcLnn39u0yY+Ph6PPfYYBg4ciJ49e+Kmm25SnhwSFBSEwYMHY9myZTAajTbHJScn499//8U111yD2gyNmjJlihorjlu3bt1U2Nvx48eVABw3bhy6d++uPDT04hSHx9EzweNuvvlm7Nu3z2Y/x/Khhx5Cv3791HnstWGY3BNPPKHaUHjNmjWrxFgQs9eL1+IYmp+TmeIhW7w3itqffvpJHcfnc8UVV+Cff/6xOY7PYuLEiUrA8V7mz5+vjistLFAQBEEQBBEkQhPnsssus4RtmcnMzFSG5NixY+0ew30JCQnK4+Ds7IzRo0cr7wJzMCoKjXASFhZmEwLUuXPnUo/53//+p65NwUEhctFFF+H1119XRjCh1+XGG29UombGjBn44IMP4OTkhNtuuw3R0dGqDQVHXFwcNm3aZHPupUuXwmQy4aqrrkJVKCwstPsqbuzTIF+4cKEywF955RUcPXoUU6dOVe/pbWJIWWxsrPI6WcPnw/t54IEHVBsKC+bomIUCBRXFDcPhnnnmGbz55pvq2jT+eQ3Cz7fffjvWrFmjxvDVV1/Ftm3blPi0hv1jmB3F6ocffqjEDc9ZHnv27FHPZfr06Zg9ezZ0Oh3uu+8+S64Q+2H2xPEeuG/OnDnYunVrlcZcEARBEJoLErIlNGkoBBiaZR22tWLFCvj5+aF37952j+HsOHNHunbtasnN+PHHH1VyO2f5raGRT8PcDI1TioGPPvpIeTDMnpKKhADxuAsvvNCSmM4EdHpn2FdCURQTE6N+mkOyevXqpYTT5s2bVTgWvTq8zpIlSzBgwADLuenxoeclICCgSuNYmpCiIHj22Wctnyma3nnnHbRp08ZyT/RGzJs3T3l1CMPfXnvtNaSnp1tC5uiVopFPjwWhSKCXZcGCBUpc0NPA/Bfm5DCUjvB+KDgZpsbwOIq5Xbt24dNPP1X7CK9pndDO50URwuOefPJJtW3QoEFKpLKfZZGRkaG+G61atVKf+WzoXdmwYYPymnzyySfw8PDAZ599pr5zJDIysszCCoIgCIIgiCARmhD2ksfp4aBBai1IGNJEr4e99pyJZ3jRtGnTlMFM2rVrp4xgejiKCxIKgeLGOpPpL7jgArz44ouVSminAKFRTG8BZ+/5uueeeyz7OdPesmVLm/wQGr7WVcAcHBxUKBG9KvQCMOH88OHDyrNgfa7KQkFmD7NYMuPl5WURI8Tf398iMMx4e3urn9aChJ4ksxghFE4Me+L4kvXr16v7ZliaWQBynCk8mDNDtmzZou6fYWvFw/bM52GxgqSkJCXcrOH3oTxBQqFnFiPEXCghJydH/aQwYX/MYoRQlJoFlCAIgiAI9hFBIjQKaFhyhrw0GE5lbQgWNzbvvfdeZegzxInGLUOD7EHjlpWyWO6WL2vonWBYjrXBTTHCEr+E4oPnDwkJUcnuleWpp55SRi778NJLL6kXDVrmlXTs2FHdf3EBYA+GbX3xxReqqtall16qPCo08Oktqipmb1F5lHbffH5lYRYu1vBeGd5FeO/0rJTmqaEooHeKYqe4CLT2CpnDq3x8fEptUxrFv1/m65jD1ihm7T0fe/cmCIIgCMJ5RJAIjQIadYcOHSpVjNAYLM3w46y1m5ub8pLQMKaXwRxKVRx6FigCuEZJ8TLBd999twoZevrppy3bed6KGuvlQW/GXXfdpV7MnaCnhuFFDz/8sPLqMBzI3roYzJOw9kzQo0OPBPNGGPbE8C3mjjDnoaFib80W5vGYw9x470xUN6+hYm/sKDJSUlJU+Jf1vVoLWbMQoZfEmrLEbkWhmExMTCyxnddi6JYgCIIgCPaRpHahUUBjlEY6E9SLs3LlSmWEWudMFDdWaZgztOm3334rdfHA3bt3K9HDnBGGT1m/GOLD8//666+qGlZNw3MyD2Hu3Lnqc4sWLVR+BvtqTuzu06cPTp06pUKwzHBRQiZPFw+popeEORVr165Vlblqs7pWTcAiACdPnrR8pmeECfIce/PzZ5vWrVsrAWh+8Xnw3ilAmC/CcC5+H6zF6rp16yyfmWdDD1bxymtlrUlTUVjVi5XMrBeKZBUwWVxREARBEMpGPCRCo4BJyExsZqUmvhi6w1AZegeYRMyKWUzwLut4Hse8A2sPR3HvCHMQGOZkD+Zm/Pfff6pqE0VLZaAHhwZ327Zt7YY1MdeF98RKU+wDS87SAGe4lXlRRl6TSd70oLDSE2f7v/zySxViNmHCBJvzUciwstXMmTOVMU9DvDrYE4JmKBLooakODHXjfdEzRXHJRHWGX7G0L2H+D8UHf7KqGO+dz+H7779XZX4JBQkT1Pl86ZVg7gbHxzqUimFWrPBFrxPbsbQy742er+rCvCP2iZW+2EfmyPA++J2rq8UxBUEQBKExIoJEaBTQSGe51o8//hg//PCDqqpEQ4+LFdKIZbWjsmCSOROoOTtunQNihrPaDItilStz0nVxKFSYL8Lk58oKEuZz0HCmgWye9S8Ok+BZoYpeEoYr0Yi+9tprcf/996v9FDIcA5YCZn4JBRkTv3lOc3lhM2xLIcPqWjT0q8v1119f6j5Wx6IHqrqLWLK/zJdhNSuKC1bBModsMZmd485yv2zD50WRRcHFMTJDQffGG2+o7wfbUIhed911WLVqlaUNxSu/OwyHo8hhRTWOPdc4qQ78LrIsMJ8PBSOfH0UwK64xtE8QBEEQBPtoTKyDKQiCIFQLFkugcGZonRl6SSiGmfsyefLkeu2fIAiCIDRUxEMiCIJQA7C0Mj0z9LQw/I6J8qx2xoT80hbhFARBEARBBIkgCEKNwLwRJtEzH4VJ+azoxvwd5vKUtyimIAiCIDRnJGRLEARBEARBEIR6Q8r+CoIgCIIgCIJQb4ggEQRBEARBEASh3hBBIgiCIAiCIAhCvSGCRBAEQRAEQRCEekMEiSAIgiAIgiAI9YYIEkEQBEEQBEEQ6g0RJIIgCIIgCIIg1BsiSARBEARBEARBqDdEkAiCIAiCIAiCUG+IIBEEQRAEQRAEod4QQSIIgiAIgiAIQr0hgkQQBEEQBEEQhHpDBIkgCIIgCIIgCPWGCBJBEARBEARBEOoNESSCIAiCIAiCINQbIkgEQRAEQRAEQag3RJAIgiAIgiAIglBv6Ovv0oIgCEJdcGL3DiSejEbLTl0R1LpNfXdHEARBEGwQQSIIgtCEWfHpB9i18nfL5xG3TUO3i0bhxK7tMJmMiOjeCzq9Q732URAEQWjeaEwmk6m+OyEIgiDUPKlnz+Dz+6fabHNyc4ebtw+SY06pz24+vnB290BWchLa9B2AEbdMhaOLaz31WBAEQWiOiCARBEFogmz7bQn++34B8rKzK3Vc1xGX4tI7p1s+R+/YirjjRxHSriNadelWCz0VBEEQmjsSsiUIgtDEOHPoAP6e90mVjj26dZPl/d/z5mDbb4stn3uOGosRt06r1Pnyc7Khd3KCVqurUn8EQRCEpo8IEkEQhCbGsW2bq3wsw7WYAK/R6rDt9yU2+7b/vhQZSYkIaNUaiadOqCT5HpdeBq2upNjITEnG8vdm4dS+3XD18sbQSVPQafDwKvdLEARBaLpIyJYgCEITwmg0YMlbr+DI5g3VO5FGA1Tgz4NnQBCunPE0AsJb22xf/Ob/cHjTfzbbeo2+HINunAwHJ+fq9U0QBEFoUoggEQRBaCLEHj6Ipe++hvSE+Dq/dlBkWwy/ZSp2r/oT0bu3Iysl2a6gcff1Q2jHzuh+yWiEdepa5/0UBEEQGh4iSARBEJoIcx+chpQzp+uvAxX0qpgZe/9j6HDB4FrtkiAIgtDwkZXaBUEQmgC5mZn1K0ZIJee3/pzzPk7u2QmT0VhrXRIEQRAaPiJIBEEQmgBObm7wCQmthTNrSmwJ79azRs7MClw/vPQUvnl2BgrycmvknIIgCELjQwSJIAhCE0Cj0WDU3Q/A1curRs/r7uNTYhtXea/p3Jd9//xVo+cUBEEQGg8iSARBEJoILdpHYepH86HR1tyvdpbvrQtS487WyXUEQRCEhocIEkEQhCaETqeHf1g4GhttevWr7y4IgiAI9YQIEkEQhCZG+/4XojHABRVZBviSqfeiZacu9d0dQRAEoZ4QQSIIgtDE8AwMRmPAaDAgPzsb7fpdUN9dEQRBEOoRESSCIAhNjFWff4jGQn5uDn6d9XJ9d0MQBEGoR0SQCIIgNCFyMjNUOd26xiswCBpN1f6kxBzch5hD+2u8T4IgCELjQASJIAhCE8LR2aVoxfQ65oYXZ+Gez79ReSFV4cim9TXeJ0EQBKFxIIJEEAShCaHT6xHSrkOdXjOscze4+/hixWezVV5IVXD38avxfgmCIAiNAxEkgiAITQzfFmFl7qd4qCk6DRmOcQ8+jpyMdBxcv7ZK59A7OiJq0NAa65MgCILQuNDXdwcEQRCEmiU3M6POFjuMObAfa79dgOid2wCTsUrnuPzhp+Dq5V1jfRIEQRAaF+IhEYRaICuvENGJWTCZTPXdFaEZ0q7fwDq7Vlr8Wexa+RvSE+KqfI687Kwa7ZMgCILQuBAPiSBUg12nU7E7Jg29W/kgp8CAtOwCHEvMwpt/HkRWvgGR/m74ZFJvtAvyqO+uCs2IzkMvwsH1/+D49q1oDLBClyAIgtB80ZhkClcQKk1KVj6u+2Q9DsdnltvW3UmP0V2Ccd+Idmjl51on/ROErNRkfDztZqCB/4rvNHg4Rt/7cH13Q2gCjBgxAjExMZbPDg4OCA0Nxfjx43H77bfX2nUXLVqEJ554AgcPHrT046qrrsJ9991Xa9cUhKaGeEgEoQrM+HFnhcQIycwrxA9bT2P57lh8cWtfRIV4wsPZodb7KDRv4qOP15oYad2jDxxdXZFyJgbx0UfLbOvk7g7vwBDEHTts2ebo4oLBN96MoDbtENK2biuCCU2b2267Tb1Ibm4udu3ahaeffhouLi6YOHFifXdPEIRSEEEiCFVgzaGESh/DEK7rPtkAZ70Wtw2OwLD2QejZyhsOOknlEmoev5ZhaqFCUxUTzUtDq9Pj+I4tFmFRHsZCA0bedT9SYmOw75+/4ezujj5jr4J/WHiN9ktoGBiMJmw6noz4jFwEejijX2tf6LR1ty6Oq6srAgICLJ/DwsKwceNG/PTTTyJIBKEBI4JEECrImdQczPsvGjEpOSgwVH3mObfQiA//PqZewZ5OWDClv+SYCDWOp38gBk+4WVXAMhoKa+y81ufKz8kpt31Bbg7WfbcQV854Gu37X1hj/RAaHr/vicULS/YhNi3Xsi3EyxnPjeuEUV1C6q1fzs7O5bb5999/8cEHH+DAgQPw8vJSIVfTp0+HTqdDfn4+3n33XSxevBiZmZlo166d2jdo0KA66b8gNAdEkAhCGaTnFmDpzlikZOdj3rpoJGTm1ej5z6bn4dXfDuDzW/rW6HkFgfS9/Bp0GjICcceOYs3Cz5Ecc6pe+pF69ky9XFeoWzFy18JtKD5VczYtV23/6KZe9SJKGLK1dOnSMvM5tm/fjqlTp+LWW2/F//73P5WHMmPGDOj1enUc80OOHj2KN954A0FBQfj7778xbdo0JWCGDRtWp/cjCE0VESSCcI7YtBy8/9cRHInLxKB2/ri+Txiu+fg/nE4pfxa4OhyMK3vNCEGoDm7ePojs1Qfh3Xrg6NaNWPr2azUexlUekb1EcDf1MC16Ruz5jbmNAVvcf0mn4FoP3/rkk08wd+5c9b6goEC9unfvjnHjxpV6zIIFC1SbRx99VH1u06YNXnzxRSQlJeHEiRNK0Pzyyy+IiopS+ylc6En5/PPPRZAIQg0hgkQQzv1BnfjZRhxLKFoPYVN0MpbvPlPrYoRc2Ma/1q8hCDq9Hj4hoXUnRjQaOLm4ouOFQ3DBeIndb8owZ8Q6TMueKOF+thvYxq9W+3LDDTdg0qRJ6n1hYaESFG+//bbKH/nhhx/g6OhY4phDhw7hwgttwwlHjhypfv7222/q54QJE2z2U+h4enrW4p0IQvNCBIkgANh2MsUiRswcOFuxKlrVYVj7ADx5WdGsmyDUNr4tQtWK6NlpqVU+h6OrG/IrsJDhuAceR/sBkjPSHGACe022qw7M/wgPP18wgd4ObqOg+O+//+x6NBiaVRrmlRG++uoruLm52ezTaqUgiSDUFPK/SRDOrRVS1zjoNPjwpl7wcpUSwELdoNM7KKHg5uNb5XM4OpddWcu/VQSmfjhPxEgzgtW0arJdTWMWFUajfe8gRcvu3bttts2fP1+tX8IEdpKQkKCEjvnFtUf4EgShZhBBIgiAWhukR5hXnV5zfJ8wuDqKk1KoW1p26oLb3v4EeienKh2fmZxY5v6eo8bCw0/CEJsTLO3LalqlZYdwO/ezXW2TnZ2txANf8fHx2LJli0pUDwwMxMCBA+0ew0UTd+zYoSppRUdHY82aNfjwww+VN4WCZPjw4Xjuuefw119/4dSpU/j0009VrkqrVq1q/X4Eobkg1pAgnCPYkzO/aXVyrW4tvfDSFV3q5FqCUByuH+IVEIik0yWrbmm0OpiMhlKP1Wg0lhnn4oR17oZOg0fUaF+Fhg8T1Vnal9W0KD6svx1mkcL9dbEeCRPazUntDKny9vZGnz59VIUsLo5oDyarz549G++9954SGxQvkydPxl133aX2MweFr2effRZpaWlKiMycOVOVBhYEoWbQmEr7yyIIzYwnF+3C15tO1Ul42A/TBiqvjCDUB4bCAsy5+9YSuSTBbdsj/vhRGA2lC5K2fQfiyOb1ls8eoZ4YOulmeHpEyKrrzZyGug6JIAgNHxEkgnCOPTFpuGr2OhQYa+e/RNtAd9zYrxXGdgtBkGf9xFILwp7VK7Fizvtlig57dBo8HJ2GXAS3lk5Y+dNLyDqdD0cfPXyiXKB10KJ/zxnw8+lYa/0WGgf1vVK7IAiNExEkgmDF7tNp+HrTCfy2+yxScwoqnIhVXiHVVr6u+PPBIXB20NVIPwWhKiScjMaXM+6t9HG9x1yJYZNvV++37p6NuIStJdoEB/RBr65310g/BUEQhOaF5JAIghVdW3rhlZbdMGVQa1z/yQYkZeWrGOhwP1dEJ2XbtI3wc8WlnYNxRfcWmPHTLuw7k26zPyrEQ60x0jHEE2O6hogYEeqdk7t3Vqo980n6XX4NBt042bItOye+lNYytyUIgiBUDREkgmCHtoEe2PzUxTiSkIkgD2ccjs/AtR+fj5snUwZHYtKAonr3P999AZbsjMXJ5GyM6BiILi08oddJETuhYeEb2rJS7ZncvvGX71FYWIBhk6aobU6O3shAyVyrzOw4JKcegq93+xrrryAIgtA8kJAtQaggP209jY/WHEVOvgHX9w3DfSPaqopDgtBY4K/7pe+8hkMb1lbqOI1Gi9s/+Bye/gGIjd+C7Xs+tNtOp3PCsIGvwclRCjbYJT0GOPEPUJANBPcEWvSi6gPi9wIZZwDvcMBf8nAEQWh+iCARBEFoZrx14+UwlbJInJObO/KyMktsn/DymwhpV1RF68Tpv3Ai5i9kZZ+FiQa1Fd2jbkdoyAW11PNGTG4qsP5twJB/fptPGyD9lO22iGFA25H10kVBEIT6QmJKBEEQmhnt+hVbIE6jgbtfAFr37APfFqFwdHW12e3hH4CgyLaWz+EtR2BI/5fh6VEUsmiNs3PtL37XKInbbSs8SMrRkttOri25TRAEoYkjOSSCIAjNjIvvuJcZ6zi+bTO8g4IxZNIU6PR6fP/ik4zrsrRzdnNXXpGhk6ZAq9MhNzMTG37+DnHHDqNF+yi0HToGOzM/gdFYVJEu0L8HfL1lLRK76Jwq1o6LUvIlNTAEQWhGSMiWIAiCgN8+fBv71qyy2RbctgMmvPyGJVfq2+ceQ8yBvZb9kb37YfT99yEhaQ9cnP3g5xMleVWlUZgL/PsqYMgru11AJ6D7pLrqlSAIQoNAQrYEQRCaOQUFWUhJOVxi+9kjB7H07VfV+5SzZ2zECDm2bTOMeVqEtRgMf99OIkbKIn5f+WIkpBfQ+bq66pEgCEKDQQSJIAhCM6agIBvrNr8Il06Z0NgJ4j20cR3OHjkEBydnVW3LGp1OB53eoe4621hh4v/BxWW3YWWyzuMBfQVDuwS7FBYWYv78+bj66qvRs2dPDBgwALfddhs2bNhg027EiBHo0KGD5dWlSxcMGzYMzz33HJKTk0s9//Hjx9V5Fy1ahPrm8ccfx6RJ571pW7duxZYtW9T706dPq/vauHEjGgrF+1vT7SvK+++/r55/dWBw0c8//4ykpKQq98H6+9fBzovPsLbvnddpCN9lIjkkgiAIzZgzcRuQnZuAlD05MBXab/PdC4/Dr2UrRPTohePbiwwe0nnoxXAqlgAv2CE3rRzviAboMxVNAua/nPgPyIwD3IOA8AsAbd0kxOTl5eHWW29FbGwspk+froRDbm4ufvrpJ7X99ddfx7hx4yztKVT4Imx36NAhzJo1CzfddBO+++47eHh42Jy/oKAAjzzyCLKzbRfJrS+eeuopGAwGy+cJEybglVdeQZ8+fRASEoK1a9fCy8urXvvYVNm8ebMSTKtW2Ya5VhR+72644QbL52uvvRaXXXaZ5ftIfH2bV4EQESSCIAjNmEJDrvqZebJ0g7kwPx9xx45A7+SMFh06IfbwAVU2eM/qFfBvFY6eo84beYIdnDwBRw8gP6PkPr0L0PMWwNUPjZ59i4HfHwPSz5zf5tkCGPUa0OnyWr/8u+++i4MHD2Lp0qXKILc23DMzM/Hyyy+r2WE3Nze13dXVFQEBAZZ2YWFhiIqKwpgxY/DZZ5/hwQcfLDG77O7ujoZCccFU3HtpfW9CzVLd9Gt+B83fQ/Pzci32fWxuSMiWIAhCMyYksC90Wkc4epY/P1WYl4szB/dZ1jAxGgxY/eVnyMlIr4OeNmLoIWA4lsM5A0TrALS/HBjyNDD0GcCrFZqEGPl+sq0YIemxRdu5vxah94KeEIZqWYsRMw888AA+/fRTODs7l3meFi1a4JJLLsGyZctKzIjTa/Lqq0U5VeXBMJghQ4bg+++/x6BBg5S35p577kFcXJylDb0y77zzDi666CJ07doVV1xxBf744w/Lfno/6LEZOnSoCikbNWoUvvnmG7shTQy9IU888YTabh2yxb7w/Onptv9PL774Yrz99tvqPftFAUbvSv/+/TFt2jRER0ejMjBcbPLkyejVq5fq7+jRo/Hrr7/abWvu3y+//IKxY8eiW7duuO6661TYWfHn+tprr6nQux49euDuu+9GYmJila5ZnNmzZ6t75bH0fKWmplr2ZWRk4JlnnlHX7d27t7rG7t271T6OKT8TPjtzyNMPP/ygPHC8F/aVHivzMTXJ4sWLcfnll6vr8PoMUaxIvxs6IkgEQRCaMa4uAejf61FEjewLrUPl/yRQlOz++89a6VuTwq8dMPhxYOCDRSKk1UDA0U2tAdMkwrToGYG9WeNz235/vKhdLXHq1CllUNK4tEdQUJAy4DgTXR7t27dX58vKylKfacg/+uijePrpp+2KndJgLgqNRYoO/mQo2e23367yXMhDDz2kDHIakDQyKRDuv/9+rFy5Uu3/+uuv8fvvvyvRQKHCULLnn3/ekidiDcOzyJNPPqk8QtZQyOj1ehuxs23bNnWPFHAMQTMLm4ULF2LBggXw8fFRAsFaQJUF202ZMkUJH+ZW8L443uyLtYAoDgUexQ+PiYyMVCFL7JeZ7du3q/HnWHzyySfYsWOHCr2rzjVJTEyMyiv64osv8PHHHyujnWLO7P244447VD94TYpKCowbb7wR+/btU+KS3jKzCGGo1YoVK/Diiy+q5/vbb79h3rx5KoSQ35maZPny5XjssceUeOV3ht+hN954Q4mi8vrd0BFBIgiC0EQ4c+gA9q5ZhfTEhEod5+0ZiaGXPoHb3voUjq7nwwgqysk9uyp9TLNEqwfcAgFdEysEwJyR4p4RG0xAekxRu1oiLS1N/ayJnAlPT0/1k2FehCKARqh1/klFMM/u0+tAQ5neDuaprF+/HkePHlX5B0yiZzJ969atcd9996kZbxrI5OTJkyqMp2XLlggNDVWChAY02xbHHOrDMK7ioVw8B0XJkiVLLNv4nuItPDxceYNo9LN/HTt2VIJs5syZKjyNRm1FoPHN/tPTwHO2bdsWU6dOVWNQlqeFbeghadOmDV566SUlhKyvyfvidooVejNo/O/Zs6da1yROTk5K6HXq1An9+vXDs88+i7/++gsnTpxQQoXCh0Kye/fuqm80/Gncf/nll3B0dLR8z5jnQa+bt7e3GjMKBT4rtmVeCJ93TTJ//nw1BhRiERERKryQgpZ9KK/fDR3JIREEQWgC/DnnfexeVTQDykUMx97/GNr1v6BS5/AKDMLNs97H4jf+h7jjRyp8HEO5hGYME9hrsl0VMCcAW4fdVBWGvRAa5Jx1p0fC2pgvDsWKNeZwL+YIMIzIDA1EGrI0Us3XYFiNNX379sVbb72l3k+cOFF5SxiyxdyWCy+8UBmgfn6VzzeiJ4ThO/QqcKw4i//www+rfZw9p6Djta2hwU/hVBFatWqlrkHDl/dHMXXgwAG1zzrxvjgUGWYcHBzUeFkb8TyvVnt+7pzjx1C3ilzzzJkzarysoceFUMD4+/tbttOAJ4cPH1Ziht6G4cOH2xybn5+vxsQeHDuOFcPAjh07poQN85mM58Jba4pDhw6VuCd6sgjznirb74aECBJBEIRaIDU+Ewmn0pCTlYeCPAPcvJwR3ikQekc9CvMNcHF3rLFrJZ0+aREj5jCqNV/NVYKE3otdq35XIqXnqLEIaVv2Suqe/oG4bPoMfPHgnRW+fqsuParVf6GRw2paNdmuCjAhnQYmQ5E4g1wcGoucwWZYTrt27co81969e9XsMwUF81JY2pVeDGvo2WD4DI1AihZrAgMDLQZ2cWgolxU2RoOS4VWEffjzzz+xadMmrFu3DqtXr1Z5MKykddVVV6Ey0EvDmXsm/NPbQKOe+RaERjO9Lh999FGJ4+hdqQhHjhxROROdO3fGBRdcgEsvvVR5O8aPH1/mceZ7tR4fawFS1liVd00+h+LPprTzmkUTnxnHg2LUXjlcekfsQcHK3B160eh5YgUtigeGcdUk+mLjZU1V+t2QEEEiCIJQwxzffRaxx2zXMsjLLkDy2XNVlkyAq6cToga0goOTHiaDETqHqpdGjTtaclHDjMQEnNq3Gz++/DRMXAeDs2vr/8XE/72NgPCSIR/WePpXvNKL3sERvcdcUYVeC00GlvZlNS0msNvNI9EU7We7WoJGLENkmP/AcJbiuR4UDswToFFeFmfPnlWhVIzFJ4zPN8/Im6Hhy7LCTCw2z7bbg94axvNTLJln3xkGxjAhs5eDSdzWM9r0xjD0iHDmn+04I07vCPNYWL6YQqiygoSLlvIYChz2h/kq5ophDNFiIjhDvcyeJoY90YPCUC97Aq843377reorQ8rMMASqvIpUfCbmhHzO5FMMmmf8q3tNGu+lPRt6QfgszGPA58Ax4tjzWO7jGJifBWE+CEPaGDpXfBHYOXPmqO/fCy+8YNlmLgnM89XUorFt2rQpkaROgcr8JHqLyut3Q0ZySARBEGoQo8FYQoxY4N/lc3+bs9PzsP2vI9j8+0FsXH4Q+zacREF+5ZN+uS7IH3OKEiytadt3oPKamMUIMRQWYs/qooTZstA7OsI3tMiIKo+IHr3hVIW8E6GJVRFjaV9FccPr3OdRr9b6eiRMjqZXgbPmnBlnCM+uXbuUV4SfmYtgPePPZO6EhAT1onBgeBSTkpmzQcPfnAxPo9b6RWgIc195zJgxQ+U8MLafgoLhXQzvoWFJIUIDlp4PLrj4wQcfKCPWvBYFk+I5w85tTML+999/sX///hIhYmZ4b/QEpaSk2N1PQUJjluej8WqGwoqhUBRZO3fuVOfgbP8///xjIxY4Tvxpj+DgYCXm1qxZo/pK4cPcG/OxpcF8B94/vR1MyM/JyamwIKnqNQlDmFh5jeFq9D7xu3HllVcqwTp48GAVIseqY8zLYPgVjX56HvjciPl7xBAxFj+gAKZ3joKK3zsmtbNAQEX6UhmmTp2qBCmFN69Dzwwrr7GcdUX63ZARD4kgCEINYDKalGck7oR9Y8AexsLzCiU1LhMn9sUhPCoQaYnZKqRLp9ciMSYdOgctAlp6QW/Hi7L22wUwnqvaYyaie29cMvVeVZK3ODo7YST2GPfAY1j06vPISEpUlaCc3dyRm1lyHY1OQ2zjlYVmCtcZue7LUtYhebVO1iFxcXFRRuDcuXNVaBNzCJjsS48EDTiGLVnDdnyZQ3VoVJoXp7NeI6I6MISHRiSNUhqNrABlni1nrghf3MakcnoqWL2JZYfJvffeq2a7uX4KxQATvFkx6c477YdTst/0BFFQ2KvuxJLGTOCmd4BlYc3QM8JxY/UqepcYvsQwKI6N2ZBl7gVzUOi1sc77MMN9zJ2g6OK9Uhgyofq9995TIoglkO3B+2HiP58V8zj4nMwhb+VR1WsS5qrQeOc5+Dz43CnCzOFcvHcm+VO0UCRxHCgYBw4cqNrwWTG3h/t5TSaWMzGeXgiGR9EjwfGkOGBfin/3qsqIESOUSOX3m+NGAUXBTTFFyut3Q0Zjqu7qLoIgCAJOHYjHqYNll5osD0dnPQoLDDAazv1apt1y7q2zm4MK8Yo7kYqstFx4+LggtJ0/5tw9Gdlptom8Y6bPQMcLh6rFDL999lEUFhTN0NGTcdMr78A7uOKlS7NSU+Di4alyUNLiz2Llp7MRF30Mjs7O6HXZFeg1uvYNTaERUY8rtTckOCtNQ5GJzU0FenNo+JoTwKsD1yFhRbHSBI7Q/BAPiSAIQjXIzy1A/Km00sO0KnUuW0+HdTh+blYBtq86X/EmLSELCadT4R/eDSd3/WPZ7ujiivDuvZSw8QtrjZtefUeFaen0enQZfim8g4Ir1Sc3bx/Le6/AYFzz1EtVujehmUDx0XpwffdCqGEYHsRwMYZVCUJtIIJEEAShiuRm52Pn6mMwFNRsaceKkpddiOCOI1GQb0Ly6b3wb9UdLbuOwK5/Yor6pIEK9Ro84VZotU1gAT5BEOoFlthlOJW9ymGCUBNIyJYgCEIVid4bhzNHktDQ8Ql2R+suwXB2a/ilHwVBEITmh1TZEgRBqCLZ6bWzICCT2Z1ca24mMuVsJnb8dRTpSdk1dk5BEARBqClEkAiCIFQRlu6tafSOOvQf0xE9hreBpgbDrIxGE2IOVy/pXhAEQRBqAxEkgiAIVSAvp6BkEnoNwFXceV56SRydajbNryrrnAiCIAhCbSNJ7YIgCFUgMSat1s69f8MJ+AR7lNiu1Wnh7u2E9KScKp03IMyrBnonCIIgCDWLCBJBEIRKUpBXiJP7E2rt/FlpeeplDRdH9GvhiYSTtmuOVARXL2cEtfJGSGvfGuylIAiCINQMIkgEQRAqSW5WvlqZvS5hGd/4E5UXI0ERPmjTveILIQqCIAhCXSOCRBAEoZK4eTmr5HPmezRUgiK84R3oDl87oV+CIAiC0JCQpHZBEIRKwlyOjv3CoNU1rMUGXTwc4R/qiR7DI9Gmewv4hXhCo2lYfRSE2qSwsBDz58/H1VdfjZ49e2LAgAG47bbbsGHDBpt2I0aMQIcOHSyvLl26YNiwYXjuueeQnJxc4pzvvvsuhg8frs45ceJE7NixA/XN448/jkmTJlk+b926FVu2bFHvT58+re5r48aNaCgU729Nt68o77//vnr+1YFL+P38889ISkqqch+sv38d7Lz4DGv73nmdRYsW1fh1qoJ4SARBEKqAp58r2vYKxaHNNf9Ho7IwtyQk0lf1SRDqE4PRiC1xR5CQk4YAFy/0CWoLnbZu5j7z8vJw6623IjY2FtOnT1fiITc3Fz/99JPa/vrrr2PcuHGW9hQqfBG2O3ToEGbNmoWbbroJ3333HTw8iryLH330EX744Qe8+uqrCAsLw6efforbb78dy5cvR2BgIOqLp556CgbDeS/thAkT8Morr6BPnz4ICQnB2rVr4eUlhSxqg82bNyvBtGrVqiodz+/dDTfcYPl87bXX4rLLLrN8H4mvb/PK+RNBIgiCUEX8W3giPsgNqXFZ9dYHho6169VCeW0EoT75M3o7/rfxe5zNPp/rFOzqjSf7X4dLI3rW+vXpxTh48CCWLl2qDHJrwz0zMxMvv/yymh12c3NT211dXREQEGBpR7ERFRWFMWPG4LPPPsODDz6otq9cuRJjx47FoEGD1GcaohQo9JJceumlqC/MgskeOp3O5t6EmoUekurA76D5e2h+Xq7Fvo/NDfkLJgiCUA1c3Jzq7Fqh7fzRsV9LOLoUzSU5OOnRrneoiBGhQYiR+/+eYyNGSFx2qtrO/bVJQUGB8oQwVMtajJh54IEHlGfD2dm5zPO0aNECl1xyCZYtW2bZ5ufnh7///luF0NAjQe+Jo6MjOnbsWOp5GAYzZMgQfP/990rI0Ftzzz33IC4uztKGXpl33nkHF110Ebp27YorrrgCf/zxh2U/r0WPzdChQ1VI2ahRo/DNN9/YDWli6A154okn1HbrkC32hedPT0+36ePFF1+Mt99+W71nvyjA6F3p378/pk2bhujoaFQGhotNnjwZvXr1Uv0dPXo0fv31V7ttzf375ZdflNjr1q0brrvuOhV2Vvy5vvbaayr0rkePHrj77ruRmJhYpWsWZ/bs2epeeewjjzyC1NTz392MjAw888wz6rq9e/dW19i9e7faxzHlZ8JnZw55okilB473wr7SY2U+piZZvHgxLr/8cnUdXp8hihXpd0NH/ooJgiBUA1axKp5Loq3BFdatSY5Nh6unM3pf0g69LmmLPpe2g0+ge61cSxAqE6ZFz4i9OWPztv9t+kG1qy1OnTqlDEoal/YICgpSBhxnosujffv26nxZWVkWD4uDg4NFONCIf++999CqVasyz8NcFBqLFB38yVAyhnoxJ4U89NBDyiCnAUkjkwLh/vvvVx4Z8vXXX+P3339X16NQYSjZ888/b8kTsYbhWeTJJ59U/bWGQkav19uInW3btql7pIDLzs62CJuFCxdiwYIF8PHxUQLBWkCVBdtNmTJFjQ9zK3hfHG/2xVpAFIdhcBQ/PCYyMlKFLLFfZrZv366EFMfik08+UV4pht5V55okJiZG5RV98cUX+Pjjj5XRTjFn9n7ccccdqh+8JkUlBcaNN96Iffv2KXHJXAyzCGGo1YoVK/Diiy+q5/vbb79h3rx5KoTw6aefRk2yfPlyPPbYY0q88jvD79Abb7yhRFF5/W7oiCARBEGoBq4eTug+NBIt2vohpI2vSigP7xxUK9fKyczH8d1nVaK6s6sjNLUkfAShMjBnpLhnpLgoOZuVotrVFmlpRQuV1kTOhKenp/rJMC9y5MgRFR7FGXV6R2jEc0Z9//79ZZ7HPLtPrwMNZXo7mKeyfv16HD16VOUfMImeyfStW7fGfffdp0QPDWRy8uRJFcbTsmVLhIaGKkFCA5pti2MO9WE/i4dy8RwUJUuWLLFs43uKt/DwcOUNotHP/tHrQ0E2c+ZMuLu7K6O2ItD4Zv85Ljxn27ZtMXXqVDUGZXla2IYekjZt2uCll15SQsj6mrwvbqdYoTeDxv+ePXuqdU3i5OSkhF6nTp3Qr18/PPvss/jrr79w4sQJJVQofCgku3fvrvpGw5/G/Zdffqm8Y+bvGfM86HXz9vZWY0ahwGfFtswL4fOuSebPn6/GgEIsIiJChRdS0LIP5fW7oSM5JIIgCNXExcMJEVYixNHFAbHHktV6JQoNY4S1MBRWbIbY1dNJhWLFn0hB7LEUm32ZqVVbpV0QagsmsNdku6pgTgC2DrupKgx7ITTI6dV4+OGH1Yw3hQXhjDxFCmfJP/zwQzVjbo053Is5AgwjMkMDkYYsjVTzNRhWY03fvn3x1ltvqfes5kVvCUO2mNty4YUXKgOUIWSVhSKK4Tv0KnCsOIvP+yKcPaeg47WtocFP4VQR6C3iNWj48v4opg4cOKD2WSfeF4ciwwy9UBwvayOe59VaFUXg+DHUrSLXPHPmjBova+hxIRQw/v7+lu004Mnhw4eVmKG3gVXVrMnPz1djYg+OHceKovXYsWNK2DCfyVjDXsFDhw6VuCd6sgjznirb74aECBJBEIQaRu+gQ/ehrZEYk47CQoOqguXgqMfRnbFIPF3SKHNw1qsKWS3b+0On1yrvBwmK8C0hSDx8pJKW0LBgNa2abFcVmJBOA5OhSJxBLg6NRc5gMyynXbt2ZZ5r7969avaZguLff/9VM+4UIdbQgP3nn3/Ue4YKWWOuvEUDuzg0lMsKG6NByfAqwj78+eef2LRpE9atW4fVq1erPBhW0rrqqqtQGSimOHPPhH96G2jUM9+C0Gim14XVxIpD70pFoEBjzkTnzp1xwQUXqGR/ejvGjx9f5nHme7UeH2sBUtZYlXdNPofiz6a085pFE58Zx4Ni1F45XHpH7EGPE3N3mENCzxMraFE8MIyrJtEXGy9rqtLvhoQIEkEQhFpA56BT+SXWtO8dirY9QpAYk4az0UUzuS0ifeHf0qvUcLCILkE4uT8eRoNJLcgY0bV2wsEEoaqwtC+raTGB3V4eCQMLg9x8VLvagkYsQ2SY/8BwluKJ7Zw9Zp4AjfKyOHv2rAqlYiw+CQ4OVj85282wKzM0NikYzLPt9qC3hvH8FEvm2XeGgTFMyOzlYBK39Yw280MYekQ48892nBGnd+TRRx9V5YuZR1BZQcIwTx5DgcP+MF+FxithiBYTwRnqZfY0UYTRg8JQL3sCrzjffvut6itDyswwBKq8ilR8JuaEfM7kUwyaZ/yre00a76U9G3pB+CzMY8DnwDHi2PNY7uMYmJ8FYT4IQ9oYOld8fac5c+ao798LL7xg2WYuCczz1dR6UG3atCmRpE6BSk8evUXl9bshIzkkgiAIdQgrYgW28kG3Ia3VqzQxYqZFGz/0HdVBJbJ3HxapvCfVLTkpCDUJ1xlhaV9S3Owyf36y3/haX4+EydEUCZw158w4Q3h27dqlvCL8zFwE6xl/JnMnJCSoF4UDw6OYlMycDRr+hCKEYVVMJGaMPg1ZxugzD4T5CuUxY8YMlfPA2H4KCoZ3MbyHhiWFCA1Yej6OHz+ODz74QBmx5rUomBTPGXZuYxI2vTXMWykeImaG90ZPUEqKrVfVDAUJjVmej8arGVZsYigU127ZuXOnOgdn++kBshYLHCf+tAeFG8XcmjVrVF8pfJiAbz62NDiWvH96O5iQn5OTU2FBUtVrEoYwsfIaw9XofeJ348orr1SCdfDgwSpEjlXH+MwZfkWjn54HPjdi/h4xRIzFDyiA6Z2joOL3jiF+LBBQkb5UhqlTpypBSuHN69Azw8prLGddkX43ZMRDIgiC0ECh8KB3JC46RSWwB4X7IDMlB6kJWXB2c0BAmDdS4jJRkFsIv1BPtIoKrLUKX4JQFlxn5N3hU0usQ0LPCMVIXaxD4uLioozAuXPnqtAm5hAw2ZceCRpw5hwQM2zHlzlUh0aleXE68xoR9LwwlImGM4UNcy3oUaDBac47KAuG8NCIpFFKo5EVoMyz5cwV4YvbmFTO8zIvhWWHyb333qtmu7l+CsUAE7xZMenOO++0ey32m54gCgp71Z1Y0pgJ3BRVLAtrhp4RjhurV9G7xPAlhkFxbMyGLHMvmINCr4113ocZ7mPuBEUX75XCkAnVrEZGEcQSyPbg/TDxn8+K48nnVNHFJqt6TcJcFRrvPAefB587RZg5nIv3ziR/ihaKJI4DBePAgQNVGz4r5vZwP6/JxHImxtMLYS4JzfGkOGBfin/3qsqIESOUSOX3m+NGAcXvJcUUKa/fDRmNSabaBEEQGiRno1NwbGdshduv99TiV1fgmiAf3BceCG0NhQkIQmNYqb0hwVlpGooM9Woq0JtDw7ciQqw8uA4JK4qVJnCE5od4SARBEBooqXFFZUcrSlimAYdQgFeOx4JLo9wbLvkmQt1C8dE/pH19d0OoYRgexHAxhlUJQm3Q/KYtBEEQGgnmFdkrSpLmvMN7cXz1y58KgiCYS+wynMpe5TBBqAkkZEsQBKGBwnVMtq0sfTE5JxcH5OUUqPc5MOEF10Ic0hf9Sr/YzxMLu0XWWV8FQRAEoapIyJYgCEIDxdnNEcGtfXD2eMmqOc7ujug5oo1KcM/Ozsd9cQk4lF0kTlx1Wjwo4VqCIAhCI0E8JIIgCA2crX8eQl5Ooc22wHBvtO3RwvI532jEH4npSC4oxCh/LwQ5SWiFIAiC0DgQQSIIgtDAYVjWzr+PorDAqD47uTqgx/BI6PSlr2Kcn5+BM/GbAJMRIUH94eToWYc9FgRBEISKI4JEEAShkZCelAWNTgsPb5cy2+XkJmPdlheRn5+uPjs6uOOCPk/D1aVi9f0FQRAEoS6RKluCIAiNBE8/t3LFCDlxepVFjJD8gkxEn15Vy70TBEEQhKohgkQQBKGJkZJ2tMS2goLKrWkiCIIgCHWFVNkSBEFoQphMRmRkniqx3dc7CgZDPmLjNyMvPw1BAb3g7hpcL30UhJrm8ccfx88//1xmm9pYNZ3XjYmJUWt0yOrjglB1RJAIgiA0IYwmAwoNuSW2uzj7Yf22V5CecUJ9PnTsZ/Tp/gACfDvXQy+FporJYED2lq0oTEiAPiAArn16Q6MrvfhCTfHUU0/h4YcftnweNGiQWlX8sssuq/VrC4JQfUSQCIIgNCF0WgcE+fdAXOJ2GzHCnBKzGCEmkwFHo5eIIBFqjPQ//0Tc/15B4dmzlm364GAEPfkEPC+9tFav7eHhoV7FtwUEBNTqdQVBqBkkh0QQBKGJ0S1qCsJaDFVVtYL8e6Jv94dQYMgu0S6/IKte+ic0TTESc/8DNmKEFMbFqe3c3xBhodH58+dj5MiR6NatG8aMGYOlS5da9sfFxeHBBx9Enz59VBjWtGnTEB0dXa99FoSmiHhIBEEQmhgODq7o2vFm2216Vxw48j0MhjzLttDggfXQO6EphmnRMwJ7qwhwm0aj9ntcdFGdhG9Vhs8++wyzZ89WIV8UHGvWrMGjjz4Kf39/JVAmTZqEzp07Y+HChdBqtfjiiy9w3XXXYcmSJQgKCqrv7gtCk0EEiSAIQjPAyckL/Xs+iqPRS5Gbn4qQwH5oHXZJfXdLaAKonJFinhEbTCa1n+3c+vdDQ/OOTJ48GePHj1fbKEByc3NRWFiIZcuWIT09HbNmzYJeX2QuzZw5Exs3bsT333+P++67r57vQBCaDiJIBEEQmgnenq3Ru5sYUULNwgT2mmxXV6SkpCAhIQHdu3e32X7HHXeony+88ALS0tLQt29fm/15eXk4erRkaW1BEKqOCBJBEAShTAoNedBotCphXhCKw2paNdmurnBwKPv7bDQa0bp1a3z00Ucl9rm6utZizwSh+SGCRBAEoQmvSZKQvAd5eWkI9O8OJ0dPu+0MxgJkZMbg1JnVyM1jOFcftAwZBIOhALsPzENs/EZoNXpEhF2KDm2urvP7EBo2LO3LalpMYLebR6LRQB8UpNo1JFiFKzAwELt371brh5iZPn06QkJC0L59e/z666+qna+vr9pXUFCgyguPGjVKSgoLQg0igkQQBKEJYjQasHnHm0hKPaA+a7WO6NX1HgT6dbVpF31qBQ4d+wWFhhzLtoSkXUhKPYSk5H3IzUtW2wymfBw9sVSFfQUF9KzjuxEaMkxUZ2lfVtOi+LARJfwMqP0NLaGdTJ06FW+99ZbyhPTs2ROrV6/GqlWrVPJ6VFQU5syZowTKjBkz4O7ujg8//BD//PMP7r///vruuiA0KUSQCIIgNEHik3ZaxAgxGvOxZefbCPDrhh6d74SD3gXpGSex7/A3do+PiV1rd/vxk38iMWWfKifs79up1vovNC7UOiPvvlNyHZKgoDpZh6Sq3HTTTSqJ/d1331X5JBEREXj77bfRr19R8j2ra73++uuYMmUKDAaDqrg1d+5ctGnTpr67LghNCo2JZSYEQRCEJgF/paemH8WZuE04cXql3TY6nTOMxkJVCji/IL3K1woO6IteXe+qRm+FpkZ9rdQuCELjRgSJIAhCE0o+37zjLaSkHa6zawb69UCHttfAwy20zq4pCIIgNC1kpXZBEIQmwukz/9apGCHxSTuwdtPzSEzepz7n5qUo74sgCIIgVBTJIREEQWgiZGWXsThdLWIyGbBtz4fqJ1eC1+tc0Ln9RISGXFAv/REEQRAaF+IhEQRBaCL4+3Wpt2sXFmYrMaLeG3Kwc/9nOB27rt76IwiCIDQeRJAIgiA0EVLTGtbq0bv2z1VlhbkeiiAIgiCUhggSQRCEJkBObhKOnlheZ7/qXZwD4OcdVU4rkyorvP/wtzV+fUEQBKHpIIJEEAShiQgSCgD71Hwxxd7d7kVk+KgKtT0R87ckuguCIAilIkntgsBk4IJc/HBoHaLT4jCkZWeMaNW9vrskCJXCy7M1HB09kZ+fXuuCxMnRS4VhnY5dz+rx5Z6f1eXzCzLh7ORdo/0QBEEQmgayDonQvIjZBix/BKazu3HUKxKvBw9FSMse2BZ3BIdTY22a9glqi5cvnIQIr8B6664gVIa09Ghs3vk28gsyavU6fj5RSEk7AqOxoMLHaDQ6RLYajQ5trq7VvgmCIAiNDwnZEpoPhgLgmxuBmK3QGPLRNvkA7j7yI747+K+NGPEx5MLVWIAtcUfw0JrP6rXLglAZ9Grl9ZoXIxqrPxW8hpOTT6XECGFJ4KMnluJs/NYa758gCILQuBFBIjQLErLTsGv3EiDTdp2GHvlJ8DTkq/duxgJ8HL8a608vwn+nF+GhlB3Yl3QKKbmZ9dRrQagcXJSwfBhiVTlMOF8ly8XJF0nJe1FVtu2ZjU073kJhYW6VzyEI9ujQoQMWLVpUr32YNGkSHn/88Vo7/4gRI/D++++r97xX3nN1WLNmjTpn165d8eWXX6KhkJ2dja+++qpSxxw+fBirV69GfbJx40b1TE6fPq0+p6Sk4IcffqjR78ckq3MUv15jRgSJ0OSZtXkRhnz3BKZtWYKCYl/5Nc4hSNc6qPeF0CCoMFu9dzYZMDV9H0YVJsPD0aVe+i0IlcXbK1KFRpVN9aJ0M7JOIy8/rVrnSEzeg+On/qzWOYSGiclgQvwOE06uMqqf/Cw0XN555x20bt0av/32G66+uuGEU86dOxeff/55pY658847sXv3btQnPXv2xNq1axESEqI+v/7661i8eHGdXa8xI0ntQpNmb+JJfL5nhXqfrHPGu97d8GDqTuhgQhb0mB4wmMHtan+eVo+pgcPwb8wvluNHavOh15Zn4AmVZVt6FlYmpSPCxQlXBHrDSStzIzWBTuuAVi2G4UTMKjR00tKP13cXhBrm9D8m7PjAiJwE8xYTXAKAHvdq0XJI5T1zQu2TlpaG4cOHo2XLlmhINNb0ZkdHRwQEBNTZfTgWu15jRqwAoUmSbyhAgdGAeftW2mz/zKsTLm0xDtnXfIGJ7W9VIsSaBL0rUrSOls+HnQNQaDTUWb+bKvF5Bbh9z3F0/Hc3ev23B5dtPYy3ouMwff9J3LjzWKP949MQ6dDmGvh4t4dGo4de54yGirdXm/ruglDDYmT9c9ZipAh+5nburwuOHTuGG264AV26dMHo0aPVzL8Zo9GITz75BCNHjlT7e/Xqhdtvvx0nT560CWGip6B79+4YOHCgCo2h0W5m5cqVGD9+PHr06KHCnNj233//rXD/srKy8NJLL2HQoEFqdvumm27Cnj17LPu3bduGiRMnolu3bhg2bBheeOEFZGZWPWz4l19+weWXX67Ox9CsDz/8EAZD0d80hvrExMRg9uzZpYZ+8f4feughvPjii2q8OCavvvoq8vOLQp0ZKsRjOa4XXnghLrroItXf1NRU1fehQ4eqa/OZMLzITE5ODp566il1DMfxyiuvxJ9/FnlNGZL2wQcfqL6Zw5F4vddee03dA59dv379cP/99yM5OVkdw+1sz+MY0kQyMjLwzDPPYMCAAejduzcmT55crgfl6NGjuOOOO9Sz4TN6+OGHkZBw/kvNc8+cOVONCb8jQ4YMwZw5cyx/w6xDqDh2P//8MzZt2mQzvvwOPPHEE+jTp4/qF9tlZ2dXuA/WFA/Zsg7pKy3M75JLLsG3336rvl+8h+nTpyMuLg6PPPKIuibv6ccff0SzEySFqbkoTMtFQUI2jLll16nnA889koLsHfEwZtsmVBYk5iB7ZwIKkyUuuTlD8fDsuq/Qe+FD6P/Vw9hw5mCJNvGOXvjTpQUO5Z3/BWDG2VgID2MBDNDgW/e2+DBPi6t+nVlHvW+aLDiTiEEb92NpQhpSCw04k2f7//y/1ExsSMsqcVxyQSEOZuWKWKkkuw/OR0rqIZhMhSg08Pdhw5uZDg7ojdZhl9Z3N4QagmFZ9IyUBffXRfjW/PnzlXG7ZMkSJTwefPBBi8HPHAmGAdEA/OOPP5QhHh0drQxsQuP23nvvxTXXXIPly5cr43bz5s0q7IbwPPfddx/GjBmjzv/999/D19cXjz76qMVAL48HHngA//zzD1555RUlFsLCwnDbbbcp0XPgwAHceuutGDx4sArzeeONN7B37161vyq/B+fNm6cM8uuvv16djwY87998vwz1CQ4OVufn+9KgUIiPj1dG7Msvv6z6TaPcGhreHHuGgLm4uKhzbtmyBbNmzVJGcPv27TFlyhTs2rVLtX/33Xdx8OBBZcxzrGkE81nRsOaxfLFv5nAkPgP2g33ns+PPDRs24KOPPlLnowFtvhca3xwvGvWnTp1SYonPiiLyxhtvxL59++zeJ43yCRMmIDw8XJ3v448/VuKK42ctGL755ht4eHio+2Kf+T369NNPS5yPgoui2BxWZT2egYGB6njeF+//03PHV7QP1eHMmTP4/fff1di/9957WLVqFcaNG4fOnTvjp59+Us/i+eefV/kvzSJky5hvQNKCfcg7nGrZpnHQwvOScLj2DETW1jiY8g1w7REIh0BX9Ysscd4eS3uNkw5+EzvCkJaP9H+2Iv9wKnTerdTfXu8r28K9f+OPpxMqz1f7V+P7Q0X/8QuMhcguzCvRpsBkwOP/zrd7fK5WjzEtxiBL44BEfVHuyOGUMziaGI02/hG13PumxcmcPHx8MgFzzySW2/bt6LPo1S0SBUYTXj56Bj/FpSDDUGTgOGo0CHbU44ogHzwQHgQ3vYTQlUZBQRZi487PQhZR00agFnqdIwzGQjg7esPNLQiJyfsqdR1nZz/odOc9kULjJmF3kSekLLif7QJ71G5faMxxNt5s/NNopWFO475Vq1Zqlp0hSiQ0NBSjRo1SxpnZGKSwaNGihdrHFw1Cs0dBp9MpA5/XMMNZdxq+SUlJ5cbx03tDMUJRwJlvQsPP09NTGX/cTo/BtGnT1L6IiAi8+eabuPjii9Use//+/Ss8DjTIaeTSA0OPi/l89FxQJHBWnKE+vCdXV9cyw37YPx5DoUFhQXFCQTJjxgybcW/btq3Fy0QhRdHG9oTeEnoneI8UI/RKubm5KUHG81Ms9e3bF15eXmo7+8S+mftFLwqfFb0K5md3wQUX4NChQ+ozhaH5Xry9vbF+/Xrs2LFDPX9+JvRq0ANFYWoWZdZQaFDUPP3005ZtFFj0sPA7Ys6xYc4Nn5tGo0GbNm2UR4Pn5PfAGooWZ2dnODg42IwvPUYUMoTfST7zPedEc0X7UB0KCwvV95h95/Pp2LGj6iPFMOFPJuJTrPv4+KDJC5K05cdtxAgxFRjV9vRVJ2DKKzJGMv45Db9JnVAQl23T3pRnQMInW5Gz4T0Yko6obTq/dnAZcB/Slh2HW68gJXCE5sWG2JIekcpywsHTdoNGg6z5VwBjXwU6jK72+ZsDLx45g49OxVfYRP0nJRMjNx9EjtGIE7m23s98kwkn8wrw/sl4bEnPws8929VKn5sEGm2FFiqsHsZznhcgJy8Rufmp6Nj2Ohw48n2Frxt96k+EhQyGh3toLfZTqCtyk0yVaFe7HjuGwFjDkBQapebQlZ07dyqD+Pjx4+p15MgRBAUFqf1RUVEYO3asEgQ0IGkoMqyFIS7m/TSYObNMcXHixAnl1SBm0VIWZuOZM/VmnJycVPgO4cw9z8kZ9eLQ6K2MIKG3JzExscR4MNSpoKBA9Z9jUxFoQFOMmGH/eA6On9lg5Yy+9X3SGDeLEULjnWLC7Cmg8c5xZggYz8+x5iw9j7PHFVdcgf/++08JSxrK7D+vbxYoxaEgoigzi08zFJx5eSUnKs3jz0pdxcef7Tn+ZvgceD/W40HxV1GPAoWhNfxOxcTEVKoP1YVCyAxFnLWY5neSVNTr1+gFSfau0qdTzGJEUWhC0hf2S0zmH//bIkaIIekw8o+vhlP7USqkS+dVNKhC86G9Tyj+PmUbI9ozNx57nPygNZlK5Ix4OrogPT+nzHO6G/LRIeMk8MvdwEP7AYeGG5ffENiXmYMPT8VX+rgD2fb/SFizPjULM4+ewa2h/mjhLDPsxXHQu8DDLVRVwqorGBqWl5eKFkEDcCaOK7dXjMzsWBEkTQRnv4qJ4KJ2tYu2WIEMCgUm/hIKCYbXXHXVVcoQvuWWW1S4yrJlyyzt6ZG45557lCeDBjC9ADTqGY5ELwXDjihSuI0GNHMh2L4i6PVlm1zMceE5zR4Sa+gBqAylhXjxGhXpizWcPbd3DnokzNATUN61ud18XRrc9KSsW7dOeTMYBsbwq88++0w9m+I8++yzKlSL4XgUlhxzelvo1SrtPt3d3e2WgTZ/H+wdQ0/Ec889V2KftVAqPnb2xqMsympnrGAfKusRKe+ZFv9/Ux/UWw9MudVPFDamx9jdpnHRixhphiSkxSIpZgccrf4wDs45g3lxf2Hnye/wWfzfJY7p4FN+ZZEcrR69Wl2HB9yikJlQNMMllM6np8qJ3agm9JQM2nQA24rlnWQWGvDQgZPovHYPRm85hP9Smuf6Md07T63zX+3Rp1dVSowQF2f/WuuPULcEdIWqplUW3M92tQ1nxq1hiE67dkVeVYZf0ZBluA1j8ump4Gy72YCm9+R///sfIiMjlVihgOFnelgYksVStJwdZ44C93NWPza2aFHdiuR4MESGWCdW01ikgc1wHPaTHht6G8wv7me+ifk6FcXf31+9tm61XYiUeR00Rq1nyCsyptYeoO3btyuPCUOX7MEkayaUmz1C5vFhX8xhXcxd4GcmwTM8iWKD4Vv8Saw9EPQ8fPfdd8pIpzeJYUv0VtFLUtq40zvD3At6cqzHk54MilB7cPzphaC3wNye3gt+B6zvpXhiPL9jrFLGtsWxvo+K0K6CfSgNPlvrIgh8z+9uY6BeBImJseE1MFGiD+hod5v3uMjqn1xoVJgyEzDlh8fwY9JZ5EODx5O3YsmZZfg0fjV+dW+N64JH4h3v7rgh/RDCC9LhbciDu4Mz4rNtwwbtYdBo1et3t3Dcse137EqIrpN7akxsSM3EL3EpePLgaXxztqjqSW2SbTDivZPnZ8byjUbcvPs4vo5NRlJBIbZnZOOm3cdUYnxGoQFL4lPxXWwSRm85iC5r9+DufSeQkF+5lcYbC57uLeHnfT5Uoq68JJXl+Mnz1Y+Exo1Gp1GlfcuC+9mutmG+CBOsaayajThzbD+NPM7I0+jn/rffflslGJtDUzij/vXXX6t8CYZO8VgmHDPEhqFJPJ6J2DTqmXzNBGCGf1U0vIUG/KWXXqryKShyGHLEWH6G4zCUignZDNnhfhqlNPxZYYmiqXiYT0WgN2fhwoXqnng/zOlgoj7FWGVm2xlOZO4Tx4tigrkp1mFc1jA/hoKBfadXicexShfH8+abb1ZtmGxOgUHvCM9PIcJka3OoEsOImOjPMeJzYX8pJHgffAYcNwol63Fn7gnHiqFqLAzAPjBXg2PN4yjs6DExC8PiMA+GQorVphiKxxePpwCxDj/j8+cY8FpMPOcCjqzWZg/eB3NueL8VYUIF+1AaFNn8zlIk8Xv+5JNPVthzU9/US8iWMbsQqIFqG/pWF8Ah/QwKoteozw4Rw+DUc7jKHxGaF3v++xiHdG6Wz60KM9GuIA3LXVvhWb/zcbfbnfwxN+4v/M+3Nw4VOFW6csn2hOO4bulr8HV2x6iIXnio95Vwb8YLJxpNJty65zj+SEyv9LEOGhYYqPq1E/OLjOAsgwFXbjuC3Zk5JUTLS0disDghDVnnEuTNLIpLQXxePn5sovkofr5RSEotim0vjod7K2Rkni9zWl+kZZyo7y4INQjXGRn4grbYOiSo83VI7r77bixYsEAZrJyNp5fDPJPPikY0jFlFi8YrcyhoaNNjQmOYhqq55CyNeIaxMHyGs+p8z0RwGrvmkCqen6KHYV00GEszdK1he/aDSdw0ptkHhh4xJIsvhixR5DCsjMYsw5cee+yxUsOMyoICh8cx3IzXZbI0xRmFSmWgkcv7v/baa5UwYCL/XXfdVWp7GsD0JrGAAKuW8T5Zqpdi0Zw/QzHC/Rw7JtozSZ1GOHNFCIUbK2OxZDFFFceEiegMaaPHgJ4qJqmzghbD5iiOWJKX52QOBquKsQ8UlyxuwDZ8Pny29kLCCD00vBbD9liNi/fBUsdMWLcOmaNXhyKLfWO1LHpt2N4eDDFbsWKFyk0ylzUui7AK9qE0OCYcTyam81nxO5CeXvm/z/WBxlRPNTXPvr0VhXE1U8LMZCwyTDRaPVy6+cNvQlSNnFdoPBxb/DAuSzr/fbowJxZz4v9WCx+ucg2zaTsu8xiWurWGqRRXaoRnIDr6hOL3E9vLve6l4T3x0oUTseb0Hng5umFQaCfoGkAsZm2zJyMbzxyOUWV5kwsrH37J+RoHrQa5xqr/+hkb4IXPurTGwjNJeORgxWafinNwUBd4OTS99WELC3Oxdff7SErZrz7rdS7wcA9D67BLEBzYG+s2v4S0jPpdmDA0+EJ071Q5w0ho+LAiJqtpMYGdOSMM06oLz4hQO7BEMj0YFHlC0TokFE/2qnQJ1aPe/hL7TeiIlB8PI/9UBnQ+TnDrH4z036s2Y0YhQrSuenhefL7Sg9B8iOx2NS5Z+gpWuBWJj3UuIVjiGgFfQ8lE6UBDLtoUpOGIY1EpwOI4psfi97Q4ywruZbHixHasPLEDxnN5K70C22DeqPvhqLNNGGtKpBca1MKGrH5VFTiqM9uFYk1KJn5LPL/gGHHWaJBbwfNyXZPPTyVgR0bVJzYY4nVXq0A0NfR6Z/TvOQOZWbHQaHRwc7W9x7atx2HrrvfqrX++3h3Qse34eru+UHtQfBSV9hURIghCIxAkDkFuCLynh5pNMc+eaF0dVMlelvQt2gBo3RxgzCpgpcky0Ye4Ieju7tA4NI5YOaGGibgQD/Uah06bFiINOgzKjcWg3LPolp+EP1zDkK4rKnKgNxkwLPs0vnG3E6pzzhA+pNFV+G8pjzBZJdFviz+qFmZ8uM9VCHAtmeDWFHjhSEyVxQjhkc8eOYN3osJKCJKKihEzzx+NqXTYV9f9HjjRMgfpHoX4OT6lSQoSM+5u9tdFCPLvgX49ZmDPwS+RnWO/Sk1NotU6ws0lEK1bjUKAXxc4ORYrrS0IgiA0a+otZKsyZPwbg7Rlxyyfvca0hktXf+SdSEf+sTQ4R/nCuYNvpasZCE0DfoWfX/8Nvjv4r/ocWpCJufF/IbwwE4XQYLZXF3zv0RZpGkcUautGsHo4uuCryx5WZYibCsez83DDzqM4kVu3tclrEuccLV54ryNSvPLx6p1H0NPTBb/16YDmysbtbyApxd6qxfx/wlmg8v886HQs96mBwVB6+ezOHSYhPNR2PQBBEARBMNMogqc9BofCuYOPCu9yDPNQK7cTvbcz3Lo33dlNoWL8dXKXRYyQGAd33Bx0EZaeWQZ3UyHuTtuDP1xbIakOk88z8nPw+e4VeG3ILWjs4Vlb07IQ5uyIRw+eavBihGa0vYwW90wdIk+5IvKUGwocjAiNd0FYrDPu6tK8f38E+ncrIUjCW16M5NSDyMgsIy/HpIFTQR84FLSDUZuBXMf1gK50QaLXShl2QRAEoZELEkIRYhYigmDmt+Nb8fHOkuVDz+rdMCH4UnzqocGsAhccM9b9InqJOekwGI2NNsmdCxDOPhlfXrRkndLb0wV9PN3grtfhQGYullmFfOk1wF1hgfjgZMkV4jPdDNgVlaFeS0fE4fbvw9FznxcuudR+HlFzIaLlxcjLS8Pp2H+h0zmhTfgYtAodhlVrHyzzOOf8gXDOv6DogxHQF7ZCuvtsu6GObq5BKpFeEARBEBp1yJYg2LDhI2D7QsQWFOAFXTBWu5YMi/J39sTI1j2xO+EEdiXW37ohLA/MfJJr2p0z3hoJfyamYfLu+q3CVBwPrRaFMCHHaALTzh4OD1alfv9ITEOIkwOebdsCVwT6qApgl2w5VGawUXC8E576uD2Gv6eFf1cJ9SzO3oMLcSLmr1L3e2TeAZ3JNkcqze1TmLS2OUHMGWkbPhYODjKZJAiCIDQBD4nQzDEUAGvfBrZ9CaQVhZIwXfcDHMK1IaNwwNHH0nRoyy4YHxiGe7fV/8JrybmZeGbdQvQJaotwz8YTHvR9HSxuaCbK1Qn7s22rofk56DAmwFstXqjVaNDGxQnfn03B2XOLGXIZo7dPxGHbBZ3wWZcI6Kzyx7p4uOJiP0+sSCq99nqqZwGcfACf5ps+UiYd216nqszFJWyDXu+KzKwYm/0mTQ5QTJBojd4w6bJgNBXCQe+G9pFXIbzliDruuSAIgtAYEUEiNFh+P74Vb279BfFZKbhaV4CHj/wA92IZAnqYMDLrpBIkWpMRL/e7Bkc3z8PM4zrAwR0NZfHAzWcPNypB4ltHa3OMD/DCogTbWXUS7OiA1zuEWRY+3JeRg/dOxtu0KTCZEJ2TjwDHkiWWZ3cKx+vHY7EhNQvtXZ3we2Iasq3WPOme4A7ds1nI1LjCS34NlkCnc0Tn9hPVixw/tQKHjy1BoSFTfc5xOgD3nGBLhFaBLg3eAZ7o0fkBaLUO0GkdoT1Xjl0QBEEQykNCtoQGyamMBIz66Xn0zT6DZ5I3w8NUABM0CDLkIFrvoSpnnXDwwNCcM8iDFgPz4tA7NwFjQ8fhpP78iu0NhR/GPoauARFoLBzJzsXoLYeQUWyF85rEVauBVgNk0t1hZ9+sDmGYcyoBO8+twM5MHOve+DrosG1gZzjrys/R2ZSaiZePxSI6J08l6O/MyEahCXDRavFx53AM9HaHs1YDx0aa71NXHIleikPHFiHf6R5oTcFwzs2HQadDrpMWQztr4evVor67KAiCIDRCZApLaJCsizkArbEA/XPjMD5kFLK1DuiZm4BHkrfhgcDBSNAXxaTvcvLHuLyzGJi2C2ucWzRIMdLBJ7RRiRHS1tUZa/tH4aZdx1SeRk3jodPitlB/vFvM62GG3ox79p+02UYx4qChZwSIcnPGq+1bVkiMkH7e7ljcqx2SCwrR87+9SoyQHKMRd+yJVuuqeOl1uLtVAO4PD67+DTZR2oRfpmqZ7T7bUvkqs9zP/wkpNDXvAgGCIAhC1ZHpQKFBEuEViJaFmXjXp7sSI2S7cwDe9u1pESNm1uh91U9dRetB1bFT8FDKGSTllJ7P0FAJcnLA9PCgWjn3va2CEOBU+dXsKUY2D4jC3/06or935UPy6CHJswrdIuZFHtMKDXjl2Fn0W78Xe2tBhDUFNBot2kaMhreb7VwWPV1ebpV/noLQGOjQoQMWLVpU4fZnzpzBsmXLLJ9HjBiB999/v1p9sD4H+8I+VRQex+Nri8cffxyTJk1S70+fPq36tnHjxlq7ntA0EUEiNEgGhHSAT1DnEtuPO3iU2OapKTIoB+bGoWN+Svnio44X0ORK7qczk9AYGRfoDSdamzUIQ62uC/HBFYHe8NVXbqFKb70Ooc5VL+Hc2d1FXb8sTuYW4K699VeZrTHQM9ITbk5F4+ig06BHpCecHOTPiQAYjQac2rsL+9etUT/5ubnx2GOP4d9/z6+NVdNcdtllWLt2ba2dXxDqAwnZEhosT154E65d8qrNtp55icjW6PGfC2tsFS17cF1IJDJOO6g8k3lnV+H+gEHY7+iDdJ1TnYsPe3g6uiDKtyhBuzHCPIu8GjQqUgsMuGLbYTzVpgV+69Mec2MSsSM9C4l5hThazsKLOQYjPjwZhyuDfNDS2QmJ+QVYl5KJlEIDLvLzVPkhpRUWuGffCfydnI7MCuTFHMrOQ691e/B021BcHXS+gptQhLebAy7p4YesPAOcHXTQsw6z0Ow5vPE//DVvDjKTEy3b3H39MeKWqWjXv3GVPm/IODs7q5cgNCVkSktosHTxD8fd3S+D3lRkQLbNT8VjKdvwSfxqvJGwDtNTd+H72N8xeet7uDVwhHpd1WI0NroEY7ihZOUmfT3M1AW7emPOJffCUdd4tf/4GjbIjee8EHfvO6HK9/KX0Ma07HLFCMkzmfDysbPos34/Bm/cjy7r9uLOfSfw+KHTuGD9Pvx9rtRvgdGkEvNzz4mPibuO4ef4VKQWGi35I+VxJr9QiZht6VnVu+EmikajgbuzXsSIYBEji9/6n40YIfzM7dxf22RkZOCZZ57BgAED0Lt3b0yePBm7d++2CV265ZZbMGfOHAwZMgRdu3bFTTfdhKNHj1ranD17FnfddRd69uyp2ixZsqTEdVavXo3rrrtOtRk0aBBeeeUV5Obmqn0MXdq0aRN+/vlnmzCphIQE3HvvvejRowf69++vjjEYzv9N2rZtGyZOnIhu3bph2LBheOGFF5CZWVTVrjjFQ7YOHTqEO++8E3379kWXLl1w0UUXYe7cuRUeN9Y2mj9/PkaOHKmuP2bMGCxdutSyPy4uDg8++CD69Omj+j5t2jRER4sXWahZRJAIDZrp/kH4N2k1lsUsxZLY5QgrzIIDTBibfQJ3p+1B1/xkOBvycG3WUax3CUbsuaT2SO+SickhhTVvWDrp9Bjd2v4q1C9cMAGrr38FPQIj0Zh5rm0oprYMUFWoysOpEh4pipEl8SmYczqhSv06XGztEq5Q8trxs1iXkoE+6/di0MYD6LV+L35PSMM/KRlVuga1y8tHY7EoLgX5xoa0Zr0gNBwYlkXPSFn8PX9OrYZv0ai+4447cOrUKXzyySf4/vvvlfF/4403Yt++fZZ2W7ZswdatW5Uo+frrr5GUlKSMf1JYWIjbb78dKSkpWLhwId599118/vnnNtdZsWKFEiwUDRQGPHb58uV46KGHLKKHQmX06NH48ccfLcfxPQUDBc6MGTMwb948JVrIgQMHcOutt2Lw4MFYvHgx3njjDezduxe33Xabuq+yyMnJUe28vb3x7bffKiExatQovPbaa9i/f3+Fxu6zzz7D22+/re6dx99www149NFHsWHDBmRnZ1vyQzgmCxYsgI+PjxJkFCqCUFOIIBEaLqkngXmj4ZN1Fm0K0y1rHpjJ0eiQf26rk1W5Vr1Giw79bsUjxiQ4GQvVNi9DHk45etZ4F/MMhVgRvcPuvu8PNo0YX71WgxfbhWL9gCiVw1GeB6M4LmUIGZ7PTtXfKhOXX4Dp+08iLr/ouScXGHD/gZPQlfj2VJz/UjOVN+f6nUdV6JcgCLbE7N9bwjNSnIykRNWutqDxvGPHDrzzzjvo3r072rRpo0QCRcmXX35paUfR8frrr6Njx47KQ0Ljm94Jsn79ehw+fFjt79y5sxIW9GRYQyFzySWX4O6770br1q2VN+K5557DqlWrcOTIESUMHBwcVEiVr29RwRVy6aWX4uabb0ZYWBiuvfZa5eHYs2eP2kfRc+GFFyrPQ0REhPJEvPnmm9i5c6fytpQnSOgJevbZZ9U98/jp06erfQcPHqywd4TnGD9+PFq1aqUECD0iHCsm56enp2PWrFlqzNq3b4+ZM2fC3d1diT5BqCkabxyJ0GTJNxTiwx3L8Nf+lfjZaEBxE5jrjjBH5GXfPvAz5OKjhDV4z38AYCgyQgtNRkz/Zz5eGvIgrt/6NfalxGCLU+0tSlhosj/r56xvWlWHQpwc8Xuf9vjsVAK+iEkstkSlfdx1WrzRIQyPHDxlN3dj9sl4VQK4ptY76e/phl8SUm22sXrWVYHeKmSrOqxPzcLalEwM8S1ZWEEQmjOZqSk12q4q0KNA43r48OE22/Pz85GXd96b6u/vDy8vL8tnDw8PFBQUWEKfuI9GuZmoqCibfA22YUiTNf369bPsa9u2rd3+UShYw+uY+0UPzokTJ5QAKg7DyRgmVRoUPRMmTFCeDZ7n5MmTyuNCjBXw6tIbxHAyijhr6G0i9AClpaUp74417Lt1qJsgVBcRJEKD4+2tv+KLvStVhaw0rSN8jbahOdeEjMIRx/NrHlwRPBqx58SImXxjIR5be25WzLl2SteWhVajwZQul6CpEeHihJfbt4SPgx6zos+W2fbeVoGY1MIPk3cfLzWR/GRekSFQUzjpNCqx/ZRVPoqPXoe3OrbCEB8PfBWbhEBHB/yZmAbbb0zF4DomgiDY4u7tU6PtqgKNb87a2yvP6+joaPe9vbwoe0a8Xn/eVLIXQmU+xrpdcXS6kt5l87l4/Lhx45SHpDjWXhZ7UExcf/31qh1zVpjTQs/P0KFDURHozSkL9o2eoI8++qjEPldX2xL8glAdJGRLaHAsP75F/XQ3FWCno5/tPtdWNmKEJDhWfj2K2qKjTyhu7Xwxvh3zKEa0sp1xako83DoY33SLRBsXJ7v7xwV44+k2LeDroMfBrKJkz7ogJrcAH0S1Qui5NU4CHPV4L6oVXHRa3NjCD0t7t8fcrq1xU6h/hc7nnKvFgO0+aH/cDc4ajarkJQiCLaFRnVU1rbLw8PNX7WoLhhIxCZzejvDwcMvr008/VeFUFYHeECbGM2zLDJO3rZPLGWplDvGyzkshDJmqCu3atVPhXtb9ZrgUw8ViY2PLPJaekdTUVHzzzTcqjIzhZPRokPLyT8weosDAQJvkf8KwL16f48p1VdjO3LcWLVqokLLNmzdX6X4FwR4iSIQGh7tDkXv80/jVGJ57xrL9L+cWeMTftnRkh/wUZGmrvi5FTVfU+uCiaXis3zXo1shWZq8KnnodjubYeq/Ihd7u6OrhgiEbD+C6HUcR4lh3jtj4/AJsTcvGyr4dsHFAFBZ1b4vTeQVYk5xh88f58dbBGOPvhVbOjrgy0BtfdIlAe9eS4qrLIQ9MXNIS9y2IxKzlHeBRLIcmP92E6D+MOLPOBGNFy3cJQhNDq9Wp0r5lMfzmqapdbcGEcAoK5j4wn4QhUDSo6TGpqFBgaBRDl5jQzXwUGul8r7XKUWTi959//okPP/wQx48fx99//42XXnpJhYqZr+Pm5oaYmBhVsasiMCmd4VYMj2IY1Pbt2/Hwww8rMVQ81Ks4wcHBKo/k999/V8KB65OYE+wZrlYRpk6dqvJIfv31VxXyxZwbijjmx1x++eUqvIwChTkt7B8XQvznn38qtTijIJSHhGwJDY4Ovi3hFL9PrTlizcC8OKWg6Rz3NeRgTNYJpGmd0Ck/BTuc/HDc4XxccE3i7eIAN0ctYtJsje+egZHIyM+BwWTE6IjeuLfnGGg1zUfjH7MjRsj2jGysSz0/o8gR8XfQI7EOwp24fsiLx87gg1NxeCQiGM8cibEkzVN4fNy56I/7zbuPY2NaUdW1k7n5SmhMauGv2lsTeaqoaptiswOWXm+AdyTQZYoWfNR/P2BEgSrgZYJPR2D4O1ronKQMrtD84Dojlz/0ZIl1SOgZoRip7XVIGBLFUrdMvn7ggQeUkU6B8MEHH2DgwIEVOgeFByt0vfzyy0okMHeE5XQpLsywNO5bb72lQpgoShgqNXbsWEsiOWGiPBdHpDHPRPnyYOI9K12xqtdVV12lQqHYZ56jrBAzwopazJ959dVXlScnNDRUJadTUFBQscpYebD0McsW8/oMAaMIYtUtc24Mq2sx0X/KlCmqVDET/jnWVfUICYI9NKaK+PQEoQ75bPefWPrfXPwS+5vN9myNDn3DxsNwzuiflrobD6SddzPP9OmFBZ4da61fDlqNWt+CaKDB/NEPoF9wezRHtqVl4fqdR5Bhp0QWl6UovvnesEBVendXZk6d9dFesvyKPu2h12gwfLNt9RkHjQZ7LuyMhw6ewrKEonCHHvs8ccuiVtAZNTBojdAZz4tNB08TArtrEFNsMea+j2kQMar5iFJBKA5L+6qqW6kpKmeEYVq16RkRBKFpIB4SocFxVdsBmL/3L2xKDkS/vHjL9q882lvEiIcxH9PSz9eWJw+k7sKP7m2Ro62dr7VZjNAzckfXS5utGCEvH4u1K0ZIWxdnHMy2zRsJdnZAVg1V0qoo2XaudzavAOF28l70GsBZp8XnXVojIb8AWmhwYocWR40m8F+hDtBZna4gXYMkOxVMt71jwv6FBnS6WYPwS0SYCM0Pio+wzt3quxuCIDQy5C+m0ODwc/HEz1c8ieUXPIbXfHpikVskZvgNxJvePc63MeTCuVi5XTdTIbyKVeSqLI5GA1p520/UJsFuPvhmzIwmnbBeEU7YCdcKc3bAmx3C8EnncFXZykwHN2dcH+yLK4K863Q2JMr9fKlO4uegV1XClIekWOnem0P9LWvZBDg6wM9Rj253aXD6ljQ88/ABpHqUrAaWnFsyBM2QB2TGAJteMSH1iDifBUEQBKEiiIdEaJD4u3ji/v43YOiJnWpdEjOcuTbChGi9Bw47eKFdQVF4Ddnr6IOz51ZqrypOpkI4aTVo6e2M06m5JVZl//jiu6t1/qbCJf5emBdjm+NzOrcAHd2c0dHdBesGRKkV0l11Wozy91Leh4fCg5UYWBKfimAnB+Wt2F+LFbgOZOZibIAX9mTmIMhRrzw0gzcV1ecf6OWGZyJDVB7MBd7uuDqoZDnSsyjAG+EnVfjZ0hFncctPraAzFeWH7OyQhlYxrii16KUJOL3GBO+2kk8iCIIgCOUhOSRCg2bJ0U14ecN3SMvPRoRnIG7vOhKzNv+kPocVZOCplK3okpeMHU7+mOnbG7HVFCRmdFoNbujZEnkFJhxKyEKgiw9Gt+mC3v5dEezcEs2dv5LScMvuaOQX+/VxX6tAPNWmRYXOEblmJ7LPhcHVFixLHOnqhBVJ6SX2PRgehMciQ0psz8804eQKExbnp+D1wFOW7QFJjuh0xAMJvvnwzNFj4i9lfw+82wOXfCKx84IgCIJQHiJIhAZPXmEBEnLSEerui/jsNIxe9DyyC6sXmlUenYLdMTLK/uruQ/wuRZRH8w3Z4qKDgzfuR64dMfFoRDAeah1c7jn4ayds9c4qLU5YU1zk64mvukeqvnDl+d8S09AiyxFD32oBQ7IGp4Jz8PrUIzbHhDo64LnIFsid5AGNoQLeDy3g2Rro8wjg11HEiSAIgiDYQ3JIhAaPk94BLT2KFkic8ud7tS5GSNuA0j0t21I3oDkz93SCXTFCvo5NsptMbm9F5CvthEnVJWmFhbhww350XrsHTx6Owb8pmdi/o0CJERJ21gUj1vtDc+5WPTP0eFPTGpeH+MDZs4KhWEYg/Sjw113Arjm2OU+CIAiCIBQhOSRCo2Fv0kkcSS171dqaIje/dMdhvqn2BVFD5bIth7AtI7vU/VyE8ONT8XgoonwvyesdwuDvqMeXMUnINtZsBS7zejWl4avXYUt6yfvYFZWBbVGp6LW/KAH/qhUhGLLJDyleBYg47YJenxf9yrRXyC2gF5Bgu4CzDQe/Afw6GxF6ocwDCYIgCII18pdRaDR4OpZMIXYyFsLVWLICUlXwcXLDZRG9cV37Qbit/QS46ux7STq4d0FzZEFMYplixMycUwlYlpBSbjsmvD/fNhQfdQ5HVVO/eVwfj5Lfix52tlmTXFiKt0IDrOuVbLPJN80BbU+6oe2lWnhGFPW05VDbHuucgQFPa9Hu2rL7+9/TJvw5xYD4nXVbAlkQBEEQGjLiIREaDa08AzAush+WHNtk2eZlzEe8/rzxqTWZYNRU3rwd1KITZg29FT7O7pZtnY2tcSL7KPKMuYjPi0V6YRrCXSPRzbMvmiN/JZdMDLdHaqEBU/acwGCfJHzdrY1aUDKloBCPHzqNlUnpCHd2VEJkyLnSu13cXRDp4oSjpaz8XhY8Nt1QUlyMCfDCpFA//J6YhlyDEWtSzq8cz5K/fyer5dXtcsF2X5vPXARzf2QGLr6r6LthLDShzRVF4uXMWsAloGjldmcfDTrfqsWxpUYYyigelnYMWPOACcH9DLjwZS20DlKJSxAEQWjeiIdEaFS8NuRmfDDiTowI64Yx2SdtxAihGLmn+2WqbHBFmdBxKD4beZ+NGCEOWke1KN6RrP3IKExHd68+6OHVH9pzizM2N/ZnlrSy/R10Jdb0MMOcjBGbD6hV3Z84dBq/xqeq0rv7snJx8+7jSC4oSml/9khMlcQI2Z2ZAzddyWTxNq7OuDHED/O7RmJu19aYFOKHEEe9Wh9lT0YOHCla7UTlRZ5wQc99XiW2p3oWYEFKEmI3mLD0OiN+n2RSq7T3fliDnvdp4RdV1M7BVYMRszVwsV8PwYazm4BTq6WmiCA0VLKzs/HVV19ZPj/++OOYNGkSGhpbt27Fli1b6rsbglAtmqdlJTRaKAYuDu+BDy++C327XWm3zf7k0/j96ufx9tDbcVf30eWe81RGgt3t0dlH8FfiMpzNi0Fs3in8Ef8LYnNPozny+rFYROfml9ieWGAo09twODsPY7cdxu8JqTbbc4xG/HfOa7E5LatafQt3cYCz9ryXYZiPBy7xPy9I7953AgtikxCbX4iUQgMSCgpVuWLHPA3aH3dDm2hX+KTo4ZGpw5QfwtVaN9YYYMK/fZJxIDkXG2cakXcuGi37LPDPDBNW3GHE0uuNSNhRJC68I7UY+50OEeV/9ZBxslq3LggNDpPRhNyjqcjeEa9+8nNjZe7cufj888/R0JkwYQJOnpRfJkLjRkK2hEbLJX2ux/+O7kC+yTYen1W4Lv7xGWTm52BkRC+VE/L9obWlnmdQaCe72+kZsbctpBmuQ1J8EcTKwKdjr0ZAa1cn9bOnpyv+SLQNB2vl7ICTueXnBtE38kt80eKYjHx6tk0L3N4yQAmOF4+eweK4VMTm2z9PvpMJh1pnWdYYeer9tsh1NOD7UTGIDcpDu2g3XLI2AIfCM3GqRQ7GfhOAgvORX0Wcuy+KlM2zjBi9UKsqiJG2V2oQ/VvZxpjOpdxbFIRGQ86eRKQuOQpD2vnJC52XI7zHtYFLF380NmRVBEGoO8RDIjRa/Fw8MW/0Q/B2Op983sLNFxtiDyI1LwuFJiOWHd8CR70Gk3t2ht5q4ttZ5wBPJyfcFDUUE6OGISk/Hgl5cWpfvjEfW1LWIS73TIlrOmubpwVZUM0/zBQl1oFVk1v4obN70Vi+2DZUrfBOnLQaPNE6BGv6ReGpyBCVC/J4RLDNsWY6uDrBOnukwASsTMpQguDVY7H45FRCqWJEYfV9SPDLx/aoNHx40wn82y8ZR8Kz8NvQeHwzNgabe6dgyBY/dNxcdhhg1hnYCBaf9lo42aajlODIz6ZGPYMsCNZiJGnhfhsxQviZ27m/tsnIyMAzzzyDAQMGoHfv3pg8eTJ2796t9r3//vu46aab8OCDD6JXr1547rnnMHDgQHzwwQc25/j2228xaNAgvP3222pfTEwMOnTogNOni7zjBQUFeO2119Q1evTogbvvvhuJiUX3xjZs+8knn+DCCy/ERRddhMzMTKSmpuKFF17A0KFD0a1bN9xwww3YuHGjzXX//fdfXH/99ejevTuGDBmirm8wGDB//nz07NkTOTk5lrZGo1G1YTgZr0eeeOIJFVJG4uLi1H326dMH/fv3x7Rp0xAdHV3Loy8I1UM8JEKjpldQG6y/cRa2xR9FgaEQ2+KP4b3tS2zarDq1FTf0CcbUQRE4k5aL1p4BaOUZhJM5x+CgicOPZ75AWmFRHE6gYwj0Gj3O5J1foduMm84dnTx6oDkysYUfPj5lP7StotBxMLdzBCJcnNDpnBgh4S5O+KZ7JFYnZ2CwtztauhR5Tu4LD1I/16Zk2AgPM2kFJbcmnBMgyxKKvCaV4XRQLs4E2ebJbOuaikWnOuHkD+UvaujsBxRPL+o0Gdj+TunH5CYWiRjHiqc8CUKDg6KanpGySF1yDM6d/KCxCq+s0T6YTLjjjjvg7OysBIG7uzt+/fVX3Hjjjfj+++9Vm82bNyuRwu009tl28eLFuPfeey3n+eWXX3D55Zdj6tSpyM/Px/Lly/Hjjz/C17dodmH79u1o06YNvv76ayQkJCjD//XXX1cvMz///LMSEhQRLi4uGD9+vBIys2bNUuf58ssvMWXKFHUOChSek9e79dZb8b///U+JoBkzZkCv12PixInquD///BNXXMFqGsB///2HlJQUjB07FpdeeqkSUE8++SSuvvpqlffCPJfOnTtj4cKF0Gq1+OKLL3DddddhyZIlCAoq+r0qCA0N8ZAIjR7OiPcOaosBLTqivU8LtS3UyxnD2/lhQIQ3Aj2LdLeTXovWfq6AQ5YSI6TAlG8RIyQ+P9auGCFD/EbCTW+b+N5ceKZNC/jotbaJ4JWc2G/p7IjLArxtxAj5+GQ8+qzfhwcPnMKQzQexIjGtxHH2TJiz55LirTEvttjCyaFynaOx0q1kqWKHfC1OL6rYr8ncJOCP24zISTw/MJFjtQgdXPoxTn4UI1JlS2jc5B1PK+EZKY4hLU+1qy02bNiAHTt24J133lFeBoqGhx56SHkxKADMTJ8+HWFhYYiIiMA111yDEydOKEFAjh8/rt7TsHdzc4Orqyt0Oh0CAgLUT8L3L730EiIjI5X34bLLLsOePXtK5HS0bdsWXbt2xdq1a7F37168+eab6Nevn9pOb0m7du0s+SkLFixQfX700UdVv+n9ePHFF+Hn56cEzIgRI5RwshY83Obl5aX6Qzw8PNRr2bJlSE9PVyKmY8eOaN++PWbOnKkEmlmYCUJDRDwkQpPCxzMHQ9r4oleYlyWW31giJIbbKx8mcyBzN1q5RqI58ndSOlIKjTZhTpWB4XJPRobgRE4ewpwdoT33bOjRmHksFoZzj4OrvD988BRaRZ/F/qxc5VZx12nRztUJh7LtV+IKctTD10GPq4J8cG+rovJWj0WGYMLOYyp5nvTwcEGwowPWpWYio5SV5LPdjCqXhOFbZi7+LwDGDA20ToCxAoXAcuKBI7+Y0PX2ovvT6jTo/7QWi8YYgZL6CX0fK/+cgtDQMWbk12i7qkCjn16S4cOH22ynlyMvLw+hoaHKwKfRbobGOkUDvSIMi+JPeiwoGkqjVatWyutghqIgN9fWsxoeHm55f+jQIXVNXssM/zYxnIpixdyGIV7WjBw50vKewumuu+5CfHy8EkkrV67Ee++9Z7d/+/btQ1paGvr2tS1PzzE4erRsL5Yg1CciSIQmxf7MHejdqmiVbTNaqxABrinh5xiIxPyifJHKYCqWPN+cWGNvDZJKiBM3nRZ37j2hZKCHToMObi4Y6e+FXh6uJfJT4vML1asIkyoVHGf5XJJWzo64JdQfYwO9LUJnoLc7Ng2MwqqkdIQ4OWKIj7syAkL+3lFmPx2cgNt3tsCJjAK0j3ZDx2NFxouplHUU7ZF6xITt7xnh5AVEjtPA2VeDgC5Agp1LO3uKk1po/Gg9HGu0XVVgXgW9AIsWLSqxz9HRUYVdMUSrODT2ma/x1FNPqZCm22+/vczrmD0lZWF9ndIS47mdIVnE/LM0GJLl7++PpUuXwtvbG56enmpbaePQunVrfPTRRyX2UcwIQkNF/hoKTQpNGV9pnUaPnp4DoNdUPpyHRHl0R3MlPr8SFrkd0gqNFp9UhsGELenZyjPyzdlktTZIddicno179p/E1duPoNDKGxbg6IAbQvww1NfD4i3r53W+AIJdMjXostgHl/8VbBEjxFS6HrK7vgiT1ffOM2HlNCNykozoPq3k91LvAni2rvh5BaGh4tTaS1XTKgudl5NqV1vQA8EEcuZq0ENhfn366adYtWpVqccxD4PeA+ZZMDmdn82Yf29UByadM9meXhBrMcK1Q8yeGIZpmZPvzTAHhbknZhF05ZVXYsWKFfjjjz9ULklpwojjcObMGeWVMY9BixYtVMgYc2gEoaEigkRoUnTz6lPqPoOpENvS1+NsXuXXEoly79Zsw7Uqs0q7Ga7G7qrTqnCqsvglPgUfdQ5He9eSM5eVZWt6NlaV0883O4ah07mKXu7ZOgzZ6IvwGBeEnXHByNUBmL4gEjqT7a9FLo5ZFlwE0SMc8OkAeITZRgPmJABLrzPh6BITggfYHkftVHi+cI4gNFqYqM7SvmXhPS6y1hLayeDBgxEVFaWSzJlPwtyQV155RXlMaPCXBg33Sy65BB9++KGqikXvg7VHgeFPzC2h0KkK9GSwXw8//DA2bdqkwqaYH0KBcvPNN6s29Mow/+Xdd99V1bDWrFmj+jNs2DDLeZjXsnPnTpXQftVVV9lcg/3keZnozoR8hpExV4btuZ3Vt/755x9LRS5BaIiIIBGaFF09e2Nk4FXwcai5mvdeel/09z3/h6E5Yg6FqiitXZxwdaCPyhspC71Go8KrVvZtjyCHsj0lgQ7lR5geKSXPxExbV2f81a8jVrp0wstvRWH8H6F45PO2ePSzthj7TzDcckpeg2F+5eWNcIHDHvdo7VfLMgLHl5lw1rbKJ4y5wNmNUvJXaBpwnRG/m6JKeEroGeH22l6HhB4DLmTYpUsXPPDAA8owp0eApXtZ3rcsaOwzD4Q/rWEFKyaN81zMzahOvzp16qSqeTFE7PDhw5g3b55KuCcULLNnz8bq1auVh4ZJ76wGxrwRM0zCZ+I7z1NcYN12222qohZL/1Jg8b2Pj4+q5HXttdeqMsDsQ1nCTBDqG41JVv4RmiCHM/epVdarQ6RrB7R164hWrm2g01QvrKixM+t4LN6MrnzeDVdQH+LjgT+TSvdctHFxVDkjpSWbm2dO9lzYGdszcrAmKR1zylio8TJ/T3zUOQJOVomn9vI8uMJ6TRLQHWh9mQabXqn4r9TBr2sR3FeqbAlNqwQwq2kxgZ05IwzTqk3PSE1ALwrXKWFol3XCekOCptrFF1+s1hQxh3IJQlNCktqFJkmEa1u1iGGusfIxMf18hqj1RpxYWklQzGgdgnauzvg7OQN5BiN+SUit0HG5RhMiXZ3we0R7HM3OUyuwv3Q0FpvSi1ZIJ0dzyq+8Q+kQm1+Ii/w8VUnfsgTJ8sR0fB2bjNH+XliakKqqdI0L9IabVcy1d1sNNPrK5YaUR0E2oK3Eb1SGdwX1rrnrC0JDgOLDuY1tYZGGCitzHTt2TFWs4qKJDVGMMFTsr7/+UmFoXGNkzJgx9d0lQagVRJAITRIHrSN8HPwQW4F8ET0c4Kn3hq+jP9p7dEaYi2Qa24NrfPDFdUIqJEhMRuhzTuPbw9FIzeuKZ9qFw89RX4WCy0Xsz8xRq7tHubugm7sLdmXmlFkVbObRM8g0GKE1AMs/z0GPaC+Etdah/3gH/OGcAlcPbzimVMzzxTyS8kK3dM7A7s8rfndOPkXGmyAI9QPzNrigIXM1zPkcDQ0HBwe8/PLL6j3XFpFKWUJTRUK2hCbLojMLkJB/ttx2V4XchECnsnMdhPOwklW/DftwJq+MJE9jAdzPLoY+v8iTYdS5oWP7G7F4QO8qh39tGdhJLZJIkvILMXTTASTaWRyRuGm1yDq3Bsn431pgyGY/9T7H0YDXpx5Bom8+pn0djs5HKr5Eeo7DfjgVREKrc8SBsanosNgbGlPVBUXLocDA55t3KKAgCIIgkIbnnxSEGqKLR69y22ihg4e+9kpRNkX0Wg3+7NMekS6ll/l0zDxoESNEa8jC7tP/qYUQp4cH4SLf8yV1K8qO9GzLe3paNg6IQpSb/bA6sxgh/XcUrd5OtnVJU2KE/HLxWaR42BdVhVpjCQ9J/MgWiLjYGb0f1GLAPp8Ki5E83VEku38KOKfZlPzteKP8+hUEQRAEIn8RhSYLw6+6e/aDDkWz0IGOIbjQ9yIlQghDcPr6XAgXnbjAK4u/owP+G9AJv/Vuj7c7hKkyv9ZoCzNKHONQmKFKATPZ/KvubSr9y+e5IzE2i4y56XW4PPC82LDGO80B/XZ6I/y0C/IdzouLXKfz66mcDczDC9MP4vtRMSWO1xtte8fvisbHhJ73A3s+MyH1cMX6XKA5Cy0c4Z11E7KMO5HqPQftJqVi1HwtfDpIuJYgCIIgEMkhEZo0A3yHop/PYBSaCuGoLTKaI906ID7vDHwdAuDp0DiSLxsqPT1d1ev6EF+czM1HVqEBX55Jgt6nN37avsum7dCwbjaJ5SzBeyg7t8LXiskrQJ7RBGedxqZscHE8M/R4/v0O0BmL9h1vmQWP7KJfdT33eWHZ0DgUOBYJG4POhJZxLuVe26gxwXWxC1auNCGvYvn8Rf0zBUBjKLpnt/whyNTmIVW/CC4Bd1T8JIIgCILQxBEPidDk0Wq0FjFCXHVuiHBtJ2KkhtcpiXBxQmcPV7zWIQwze/TDzAsnIcjdH+5OXrgm6lLMucC2OsyL7VrApRJJ3UN83OGss/2VNT7YF17FVnq/ckWwRYyQ1qfdkH9RLuJ98rCz3fmwKbXvpAsu2O5r93rWCyIme+XDP80JWbH2+6YrRdNoznnjzDjns6yWeEYEQRAEwRpJahcEod5IKSjE+tRMfHAyHtusckSIswYId3HG6bx8DPZxx2vtwxDk5KD2GU0mzDwWi/kxiWpWhQsxFppMaOvqhIvuD4PGSpBY89atR3E8zPY698+LRNuTbtW+F0cvoNXFwJGfSm+T67APl831hl9LLukuCIIgCAKRkC1BEOoNHwc9LgvwRpSbC27fexx7M3PhqdPixhA/zGgdDPdi3g8zX8UmYfbJeMvnnZk5mNslQp3rv0EGxPxj/3opniWT2BOD8youSKhzSpnCyU8Dji4p/VAj8uDm7QO/li0rdi1BEARBaCaIIBEEod5p7eqEVX07IjYvH74O+jJXWSerk0smzXPRRgqSPo9okZJegOwdJcVMpyPu+K93iuWzzqBB2wNlixFnf8DBFXD0BIJ6abDvy9KdyqYy1njUapzQf3pomdcSBEEQhOaI5JAIgtBgCHFyLFeMkDYuJcv9Lk9IxQ07jmKvKQfGyPPVtKzzQa5YEYw+u7zhUKBBYKIjbljaAv7p9ksHm8lNBHKTgMixGmScNkFTxaVDAnsCoYMkf0QQaovdu3dj9OjR6NKlC66++mo8/vjjavuiRYvQoUOHGr/exo0b1XlPny59Ad5JkyZZ+lETnDlzBsuWLaux8wlCQ0E8JIIgNDruDAvEn0npOJB1vkpXUoEBq1MysHVHJn5q2wkHAfw1IAF/DkpQpX/77fDB+D9a4OZfwpC/NBTreySj9amKlXwuyAI2v1q9dLuCzGodLgiNApPJiOTUQ8jLS4WTkzd8vdtDo6mbuc9PPvlErWy+fPlyeHh4QK9veibOY489htDQUIwZY1skRBAaO03vf6sgCE0eLox4bZAPXj5WsuxVhsGEo90ycfIS4OeBZy3b1/VNRoZ7Ae74IQKOhVoM2uaHf/okImiTc530ueVQ8Y4ITZuz8Vux7/DXyM07Hxbp7OSDTu0mIDiQFeZql7S0NERFRaFVq1a1fi1BEGoWCdkSBKFRsuDM+ZXgixPk6oD4gbbVtMiuqAxs7FZkLLE0cI8DXjXSl7U9kyyruzM8LMUrH+0mAb6dAPdQoNPNGnS4XgSJ0LTFyLY9s23ECOFnbuf+2mTEiBHYtGkTfvnlFxVGxc/FQ6W+//57DB48GN27d8e0adMQE3N+UVS2f+2113DZZZehf//+6lwGgwHz5s3DyJEj0bVrV/Xzm2++KXHtv/76CxdffLFqwxCtAwcOlNrPlStXYvz48ejRo4dqz9Cyf//917I/OjoaU6ZMQe/evdGzZ0/1/uDBg5bwL/br559/Vv0VhKaECBJBEBoVeUYjFp5JxMnckhWzSKCjHhf4uMM/1n5uyNYu51c29E4vKiNcGqWtL2KNQWvC3nYZSPDNt6zq7pPmiBNrjbhotg6jF+rQ+RYtNFYLOgpCUwvTomekLPYd/ka1qy1+/PFHZcAzh2Tt2rUIDg4u0WbBggV499138dVXXyElJQX33HMPrFc+WLhwIZ5++ml89tlnSjC8+uqr+PDDD3HvvfdiyZIlmDhxImbOnKlEijVz587Fc889h59++glubm64/fbbkZOTU+L6e/bswX333afCrXg+CiRfX188+uijyM8v+v3x0EMPISgoSJ3rhx9+gFarVdcn77//vuUeeb+C0JQQQSIIQqNhd0Y2+q7fh0cOnrZbfZcLLS7sGokTOXnI/0+PwMSSosTt3KrtJM4vr8zrGUraFCWgp+XO7yMQkmgb+pV/XIuss7LMk9D0Yc5Icc9IcXLzklW72oKGPfNHnJ2dERAQAJ2uZPWJWbNmoVevXirpnd6Q/fv3Y/369Zb9Q4cOxQUXXKA8FxQI9IZMnz4d48aNQ0REBCZPnowJEyZgzpw5NkLmmWeeUZ6X9u3b4/XXX0dWVhaWLl1a4vrsE9vecsstCAsLU+FlPGdycjKSkpJUm5MnT6p7YZ5I27Zt8b///Q8vv/wyjEYjvL29LffINoLQlBBBIghCo+HZIzGIzy+0u6+Ppys2D+yMbp6ueO5IDPaEZuDhuW3gnXpegDjnanHxf/6W0Kovrj6JTBf75zNTPB+3olW29C6AU81EhAlCg4YJ7DXZrjag56Jjx46WzxQYXl5eOHTovEgKDw+3vD927BgKCgpU6JQ1/fr1U+LBLCCIdRtPT091buvzmqEAGTZsmBI0DCe78cYbcf/996t9DA8jDz74IL744gsVNsawsj///FP1m54SQWjKSFK7IAiNhoNWVbWscddpMatDGPwdi36lrUvJRFZfI4ISnfHYnLbY0Skdid75GL7JH16ZRWFae9tmIMvNAPecsn8NhgwCchOAjNOAf2fAUAjEbymnoxqgy+0a6F0kTEto+rCaVk22qw3seUzodXB0dLR8pufBjLUHpPgxxLqCV/FzU1xYn9cM8z+YE0JRQhFDzwtDuxg6ZoZhYaNGjcKaNWuU9+a9997DRx99pHJj/P2LJlMEoSkigkQQhEbDIB8PLI4/P8vKOcNpYQG4tWUAwpzPGwA0GYw64NuxMfhppAYmDWDUmNS28DMu8HLUovN2D9yzoLXarmWDUnD21ODCF87PTi6fYLvGSXF82gMDntXCPVTEiNA8YGlfVtMqK2zL2clXtasv0tPTVTiUuQIXE8UzMjJUmJU92rRpo8Kjtm7dqjwbZrZs2aJCwuhdsc4NGThwoHrP8Csmpt92220lzslcE3o+mAtinddiFkD0usyePRtTp05Vye58xcXFYciQIUrMMOFeEJoq4gMUBKHRMLNdKIb7etABgRAnB3zYKRzPtg21ESOku8f59UUKHEwo1BeJkb8HJmLeNafw1UUxKvk8JMm5TDGidShaENEa/25lCA0t0PUOESNC84LrjLC0b1l0andjna1HYg+GPD3wwAPYsWOHejGRnOFXffr0sdve3d0d119/vfJQMB/kxIkTKhn+66+/VmJDozn/f/zZZ59V3gzmpDDkKiQkxK544HYKIYoaLqbIxHUm2RPmrFDkrF69WiXW81ynTp3Ct99+q4QR817MoWesDnb27PmS5oLQFBAPiSAIjYYARwd8072NqrTlqNHYGAXWPN+2Ba7fcRQphfa9Ge6uuqLpGDtFf4IHAC4BgMakUWLEp4PtNbpP0yA3yYS4LYCDB9D2CiA/UwNDLhAxWoOAsgSLIDRRuM5Iry732FmHxFeJkbpYh6QsmAR+xRVX4O6771ZhUsOHD1eGf1k88cQT8PHxwRtvvIHExESVG0Lxcd1119m04znZlt4RekBYpcteyBYT5Hke5oYQc9L6jBkz1Crz9Mp8+umnKuGeie/sJ70zzDkxe3ZuuOEGtTji5ZdfrkSQvVA0QWiMaEylBUoKgiA0YrIKDVibmomXjsTgSE5RSU0zn3QOx4Vx3jj6qxFn/gMKz1XTcmsBXDRbCyfv8kVFQaYJOmdAqxcBIggNYaV2QRAaLyJIBEFo0pzJzcfEnUexPztPuYQfbh2MByPOr1FQkG3CmXUmVT2rxQUa6J1FYAiCIAhCXSKCRBCEZiNMvBx0cJMQB0EQBEFoUIggEQRBEARBEASh3pDATkEQBEEQBEEQ6g0RJIIgCIIgCIIg1BsiSARBEARBEARBqDdEkAiCIAiCIAiCUG+IIBEEQRAEQRAEod4QQSIIgiAIgiAIQr0hgkQQBEEQBEEQhHpDBIkgCIIgCI2eDh06YNGiRbV2fp6b12gsfT59+rQ6/8aNG9Xnxx9/HJMmTarWOT/66CP069cPPXv2xO7du9FQOHPmDJYtW1apY/7++28cOXIE9cn777+PESNGWD4fPnwYq1evrtHvh/U5il+vISGCRBAEQRCEGsFgMmFdSgZ+jktRP/m5qXDZZZdh7dq1aK5kZGTg3XffxYQJE7B06VJ07NgRDYXHHnsM//77b4Xbx8TEYNq0aUhKSkJ9ctttt+HHH3+0fL7zzjtrVegVv15DQl/fHRAEQRAEofGzLCEVTx+OQWxegWVbiJMDXm4XijEB3mjsODs7q1dzJT09HSaTCQMGDEBoaCgaM7yPhoCbm5t6NdXrVQbxkAiCIAiCUG0xcvueaBsxQs7mFajt3F+X2AtNKb6NoSzfffedmvHv2rUrRo8ejW3btqltw4YNQ69evfDAAw8gNzfXbsgW33O2+ZZbbkG3bt0waNAgfPDBB5b9RqMRn3zyCUaOHIkuXbqo891+++04efJkhe/jxIkTuOuuu9C7d2/0798fDz30kM2s/k8//aT6zevz5/z589V1qwLv85133sFFF12kxuOKK67AH3/8ofYx7Ms8djfffHOpoV9s8+GHH2LKlCmqT5dccgl++OEHy36OIbe9/PLL6p7uvvtutf3o0aPKY8F75Pbp06crL4aZ6OhodU7uY7gY3x88eFDtY182bdqEn3/+2dJHhnA9+OCDGDhwIDp37owhQ4Zg1qxZamwYysZ7JJMnT1bfC3Mf7rjjDnV+PsuHH34YCQkJ5YZ9XX311ZZ75fjl5+fbfEe++uorXHfddWpMx40bh1WrVtn9To4YMULdM79D1uN7/Phx9R3j8YMHD1bfqcr0wRrr6xUP6SstzO/RRx9Vz6tPnz4qXO+9995TY8X/N7wm72nnzp2oLiJIBEEQBEGoMgzLomfE3pyzedszh2MaZPjW22+/rUTCr7/+Cg8PD2UU0wifM2cOXnnlFaxcudLGoC7Oa6+9hquuukrlL9x0003K4Nu8ebPa9+WXX+Lzzz9XRh3POXv2bGVYv/rqqxX2SEycOFEZlxQaX3zxhRIzFEmEwun111/Hvffeq67P7Z9++ineeOONKo0Fxc4vv/yCZ555BosXL8bFF1+M+++/X40BjXTzOPAezUa8PShI2J7nYv+fffZZLF++3LKf9xAfH6/2UzTQCL/++uvh6Oio7nPu3LlKCHA8MzMzLX0LCgpSAoz90Gq16r7N/eH1KMjM4UgUcQwx45j9/vvvKlTps88+w19//YWQkBCbe+G+uLg4ZWCHh4erc3z88cfq2uxXdna23fv8559/1JhTbDCE7bnnnsNvv/2GGTNm2LTj86C443ds6NChqt8UvsX58ccfERwcrPpjPb4LFy7ElVdeqcbwxhtvxFtvvYX169dXqg/VgdfV6XRKTFIY8XvM/ycUhRxHJycnvPDCC9W+jggSQRAEQRCqzIbUzBKeEWsoQ87kFah2DY1rrrlGzRhHRkYqozEtLU0Z0O3bt1eejaioKJVoXBo0FHlcWFiYMtI8PT0txmarVq2UYBk+fLgKceJs/ahRo3Do0KEKG4JZWVnKAKWHpVOnTmqmukePHkqk0PCn4T1mzBh1ffaXBj4N2Ly8vEqNA2e8OXNPg5beodatW+O+++5TngQa5xQLvr6+qq2Xlxe8vUsPwaN3gUY3x5QGLO+ZQsMaekbY53bt2uHrr7+Gq6urMtyZl9K9e3c1C09PEI14s4jh9TmObdu2xf/+9z81FvR4sC8ODg4qnI5t6OnhM3nppZfU+Xgd9sPf3195VWhcW98LQ5i++eYbJQaefvpptGnTRo03PQ3sAwWNPTguFAI33HCDeta8bxrmbE9Pgxl6LyjMOB6PPPKI8nTwGRXH19dX9Y1jYT2+FEr8nvE+OG4Uznv27KlUH6oD+8IcHZ6f42jOp+J3g94U3l9Fv9NlITkkgiAIgiBUmfj8whptV5dwRtyMi4uL+knDywyN3NLCXwiNV2toLBYUFIkzCh2GsjARnGE3fLGqE2f6KwKNvIiICGU0m6GBzVdycjLOnj2rxArPb4YGOsUIjVHOXFcUc/gTQ6Ks6du3r7pGZWDYlTX0XlhXjiK8L+v7pACg6DETEBCgRJHZ0KXQogiheGHYEEOXxo4dqzwlxeEzo3eFRvmuXbtU2BvvLzExsdRwtn379inhyb5aw7GkWCvtGJ7fOkncnJvCY1q2bFnqeKxbtw4VJcJqrAhFr1lwVrQP1YHnMI8zxRKhOLIeb/N3vjqIIBEEQRAEocoEOuprtF1tUVhYUhDp9SX7ZM/ILQ1rI7q4QciwL4a3MKSL3hHOLtMLUdHytPb6ZsZsWD/xxBO44IILSuxnWBLDoqoL76WsftijeHv2tfiYWhcHKC3BnMfR80HoYaCnZc2aNSpciR4UliBm2Bc9H9YwxIqChJ4SHsPxZ64Dz1EavBaT9ekhKg5FZmnHMNyP5y8OBVVp42EwGCr1HdPpdCW2mceson2oKOxbcczPwJrK9L+iSMiWIAiCIAhVZoC3u6qmpSllP7e3cHJQ7eoKGlEMd7KGM+V1CcNp7rnnHjz//PMqF4GhVswhqWiFJ4YmsT1zIczs3btXiRvOSDPE59SpU8rLY35xP0ONKos5WX/r1q0227ds2aL6URmKl61lCBvDzcq6No+x9kTRm8HnRQ8Uw6ZefPFFdc8MD2JyOnNcmGfCZPbisDQzx4E5PEyOZ3iRu7u7Oo957DUa228rQ8foUaCQM48lPVP0ypQWjsRj6PWyHn96rZjXY/3dKz4e27dvV4n2NUG7CvbBHmahYc7TIfy+1RciSARBEARBqDI6jUaV9iXFRYn580vtQlW7uoLGf2pqqkoqZ/jSt99+qxKA6xIatwzNYZjWsWPHVAL9n3/+WWYImDWsXkSjmAnKBw4cUHkDnMFnfgvPzYpQCxYsUPkIzLFYsWKFEj/0Ptjz3JQFDX/mujD/gOFVNHJZ7YkeHSZZVwZ6gFhZisYtE8nZL87ilwYTtWk8m++TIUhMpvfx8VH5MRwD9on5Hfv371cijM+TBjVDvQjzQJgcT2OcuSCEooXbKKqYe0FBYx57c+gRxQYFH/M0+JM5HuwDXwwTo5jgeNuD489iBRwnjhc9N/RY8TzW3gnmzyxZskS1YU4Rw8dYqcwebm5uatwoyCpCRftgj8DAQJWTw/5RjFGMMvyvuFirK0SQCIIgCIJQLbjOyGddIhDsZBveQc8Jt9f1OiQMv2FSNis20ailMOBseV3CWWqGDTFxniFENH5p8HOmnmVpy4M5LRRUDDVj0jKNenorzB4QCgVW8KIgoRdg5syZKsG5qhWPmCvCylpPPfUULr/8clVOltWeGPZUGRg+RBFCQcWkdPaX1aXKylHgPbCqGD1JrN5EY5qJ5syXYMgTq4cxTIhhb3ye//33nwqJM+f7cHw4vuw3vQ80yukhYeUtvmcuDHNOzN4Kih0+Fz4jGuHMiWAfKIwokPi8KHh4DnMCfHE4LhSZrELGe6WgKl762dy3efPmqb5RHPGZlrao5KRJk5T4qqgIrGgf7EHhwfunh4RFAFjMgdXMaiMcqyJoTA1ldRhBEARBEBo1LO3LalpMYGfOCMO06tIzItQvTOSnIKEYFIrC0Vg+mqFmQtlIUrsgCIIgCDUCxceFPvaTgAVBEEpDQrYEQRAEQRAEQag3JGRLEARBEARBEIR6QzwkgiAIgiAIgiDUGyJIBEEQBEEQBEGoN0SQCIIgCIIgCIJQb4ggEQRBEARBEASh3hBBIgiCIAiCIAhCvSGCRBAEQRAEQRCEekMEiSAIgiAIQgPh9OnTaoXvjRs31ndXBKHOkJXaBUEQBEGoEbi0WWJ6AXILDHB20MHf0wEajaa+uyUIQgNHBIkgCIIgCNUmJjkXu6IzkJtvtGxzdtSiW4QHQn2d67VvgiA0bCRkSxAEQRCEaouRTYfSbMQI4Wdu5/7ahmFO3333HSZMmICuXbti9OjR2LZtm9o2bNgw9OrVCw888AByc8/35YcffsC4cePQrVs39OjRQx27e/duy/6CggK8++67GD58OLp3746rr74a69atU/sYUtWpUyfMmTMH/fv3V/uMRiNiY2PxyCOP4MILL1TnnDJlCg4cOGA55+OPP46HHnoIL774ourTwIED8eqrryI/P9/mfnbu3Inx48ejS5cuuOiii/DTTz9Z9rHta6+9hhEjRqj9/fr1w/3334/k5GRLm5MnT+KOO+5Az549MXjwYHzxxRe45JJLsGjRIksbnpPjxPvnz/nz56t7EIS6RgSJIAiCIAjVCtOiZ6QsdkdnqHa1zdtvv43bb78dv/76Kzw8PDBt2jT88ccfSjS88sorWLlypRIhZMWKFUoUsP1vv/2GefPmIS8vD08//bTlfDNnzsS3336Lxx57DEuWLFGGPc957Ngxtd9gMGDNmjVK9LBtdnY2brzxRsTFxeGjjz5Sxzo7O+Omm25CTEyM5bx//vkn4uPj1f6XX34Zv/zyizreGoqDu+66C8uXL1fXZb9OnDih9r3++uvqHBQyvD/+3LBhg7omycnJwS233KLExTfffKPGhULk1KlTlvOzzzzPvffei2XLlimx9umnn+KNN96o5ackCCURQSIIgiAIQpVROSPFPCPFyck3qna1zTXXXKO8BpGRkbjiiiuQlpaGZ599Fu3bt8fIkSMRFRWFw4cPq7be3t5KBLBdaGio8mZce+21OHTokNqfmZmJH3/8URnqo0aNQqtWrfDggw/i1ltvVfvM3HbbbYiIiFDnXrx4MVJSUpRXhV6Hjh074s0331Si5KuvvrIc4+npiVmzZql+0ftB7wa9Fdbnveeee9S9mK9LcbF37161jx4gekjoGWHf2e6CCy6w9J0iht4SXpt96NOnj7qetSj88MMPleAZM2YMwsLC1PjwOgsXLlTCTBDqEskhEQRBEAShyjCBvSbbVYfw8HDLexcXF/WTBr0ZCgNzaFTfvn1x9OhRzJ49W3k86H04ePCgJWTp+PHjKmSLoVrWMNyKmKtgUYyYoSDgZ19fX5trUpyYxQLhZ3P/CMOqeC1e08fHR21r3bq1Zb+Xl5f6aRYKFFH//fef8mZER0er/vNYCg+yb98+dTxFlxkKE3qNCMXK2bNn8dZbbynxZIb3zmuw0lebNm0qOfqCUHVEkAiCIAiCUGVYTasm21UHvb6kWaPV2g8GYQgW8zmYQ8JcjhtuuEGJBoZxEQcHhwpd08nJyfK+tLA0GvrWfSt+brMI0ul0ZfbbfH56fRiqdeWVVyrvCL0pn3/+uQoVM5+nrFwQ874nnnhCeVaKExISUsYdC0LNIyFbgiAIgiBUGZb2ZTWtsnBx1Kp2DQnmlTBEi/kXEydOVB4Tc44FDX96WygcrJPcyXXXXafyTUpLrKfHIikpybKNHoc9e/agbdu2lm0MvWL+iZnt27crj4m1V6Q0GBLG/I/nnntOCQom0zNcjF4Ss2ChN4Qen9TUVMtx9AZlZBTl+vj5+SkvDu+X92l+sV/vvPNOJUZREGoGESSCIAiCIFQZrjPC0r5l0TXCo8GtR0IvAKtw0QhnRSqKDOZPEIZ1USAwGZ0hTatWrVJtGOJEL8qQIUPsnpPeFoZJMe9k165dqroWK24x2f3666+3tGOC+wsvvKBEApPT33vvPXUt6zCu0nB3d1ehV+yTOczsmWeeUfdhDkcbO3asCv3itdmHHTt2YMaMGWofnwNfrMC1YMECdc+8Nyb5P//88yrEzNHRsYZGWRAqhggSQRAEQRCqBdcZ6dfeq4SnhJ4Rbm+I65DQiPf391dCgOV1//77b1V1ipi9IswXYb4GvREUG8wboWeFSfP2oFCggc+kdVa5YhlhlhlmpSsmjpthAj1DsuihYZWtyZMnW3JTyoNeG4okCiP2iVXCWFWLxx85ckS9p6D47LPPVF4KPTr33XefSvg3H29OxmfIGvt72WWXqQR/tqVQEoS6RmOqizp8giAIDYhCgwmnEnOQnWdAsI8T/DxkNlAQagJZqb18KALoIaF3orZgUjpDxwYNGmTZxvwSenZY7cuc/C4IDQVJahcEodkZTGv3JSMlq1B9PnQmG73beKJVQPmhEoIglA3FR4CXCPz6hnkrU6dOxcMPP4xLL71U5Y4wN4QVwIpXDROEhoCEbAmC0KyIT8u3iBEzB2Oy6q0/giAINQ1L9jLfhZXEmE/CtVNcXV3Vau0VrR4mCHWJhGwJgtCsiEnKxabDaTbbGPc+uldAvfVJEARBEJoz4iERBKFZ4evuAF2x33zhEq4lCIIgCPWGCBJBEJoV246lw2C0rQIU1dKtPrskCIIgCM0aSWoXBKHZkJtvUDkk1uTkG3EqMVcltecXGlU+SXJmgfKkdAh1g6Ne5m0EQRAEoTYRQSIIQoMgr8CIAzGZSM0shK+HAzqGusHhnBhIySrAruMZSjC09HNWQkGrrXwpUV0px+w+kaGqb+07lYXcgiL3SXJGAdKyCzEoyqeadyYIgiAIQlmIIBEEoUGw4WCq8kwQ/szIKcQFHX2QllWA1buTLe0OxGQhK8+APm29Kn0NChx3Zx0ycw022/MLTdh2LKNE+4S0fOTkGeDipKvSPQmCIAiCUD4iSARBqHcycwstYsRMXGo+DsZk4mxKXon2DLECTOjaygNOjmWLhZjkXMSl5sHFUYf2LdxKJLSXBddz0+lkUTdBEARBqE2k7K8gCHUOvR47jmcgNasARhPg76FHYobt2iAVQasFhnTyhY+7/br6e09m4tCZ82uMUFsYKvEbz8tVhxHd/CvdL0EQBEEQKo5kawqCUOsw/Oq//SlYvjUB/x1IwT97U5RHhGKEVEWMEKMR2HQ4VeV/lNxnwuFY2wUPKyNGSFq2ARsPpSKrWIiXIAgCOXz4MFavXl1r53/88ccxadIk9f706dPo0KEDNm7cWGvXE4T6QgSJIAi1isFgxJq9yYhLy1eJ6wzFKjQrkRogO8+ockCKk5FbiJrw/55JzsOqXYkqrEwQhHIwGYHkY8DZHUU/+bkJc+edd2L37t313Q1BaPRIDokgCLXKrhOZKLAjGGoKVyctHPUl8zwS02xzUsx4u+qRnlNo8c5UBK5bEh2Xgy7hHtXpqiA0beL3AAeXAnlp57c5eQEdxgKBXeqzZ4IgNHDEQyIIQq0Sn1YyKb06MCndXL2XQqRXpBc0zD4vhpuz/WT3rHwDfNwqPxeTni0eEkEoU4zs+spWjBB+5nbur2UYzvTdd99hwoQJ6Nq1K0aPHo1t27apbcOGDUOvXr3wwAMPIDeXRTGK+OGHHzBu3Dh069YNPXr0UMdaezx27dqltvXs2RN9+/bFfffdhzNnzqh9I0aMQExMDD744ANLWFVxGE46f/58jBw5Ul1jzJgxWLp0qWV/XFwcHnzwQfTp0wf9+/fHtGnTEB0dXavjJAgNEREkgiDUKlo7YqE6sFrWkM4+GNHVF6N6BSDAy9GyLzE9H1uOpGH7sXS1AnuIj1OJ4+mtScoshINV9Sy9VgMnvUZV1SoNhpxJ2JYg2IFhWfSMlAX310H41ttvv43bb78dv/76Kzw8PJSB/8cff2DOnDl45ZVXsHLlSiVCyIoVK/Diiy+q9r/99hvmzZuHvLw8PP3002q/wWBQIVkUIosXL1b7KUaefPJJtf/HH39EcHAwbrvtNrz//vt2+/PZZ59Z+kQhcsMNN+DRRx/Fhg0bkJ2dbREyCxcuxIIFC+Dj44PrrrtOCRVBaE6IIBEEoVZxdqzZXzNcQ2Tt/lS1poj1QofxqXn4d1+KKgkcHZ+jEue7hLtjaGdfRAa5lDhPgcGkwr08nLVoH+qCwZ194OVatueE+S+CIBQjJbqkZ6Q43M92tcw111yjPBeRkZG44oorkJaWhmeffRbt27dXXoqoqCiViE68vb0xc+ZM1S40NFR5SK699locOnRI7c/MzERKSgoCAwPV/s6dO+Odd95RXhbi6+sLnU4HV1dXda7SvCOTJ0/G+PHj0apVKyVA6BEpLCzEsmXLkJ6ejlmzZqFjx46qj+yPu7s7vv/++1ofK0FoSEgOiSAItUpl1v2oKIUGrqqeabM44rG4HNs2RhNOJeQiKswdBqOpxH5zQjzZdypbvcqDXhdBEIqRn16z7apBeHi45b2LS9FEBIWAGWdnZ+TnF00s0PNx9OhRzJ49G8eOHcOJEydw8OBBGFm+j2W/vbyUZ+Oll17Ce++9hwEDBmDo0KEqFKwiUMwkJCSge/fuNtvvuOMO9fOFF15Qgon9sIZeGvZLEJoTIkgEQagVkjLyse1oeolV0WsKekKiWrrBzbno15i9cKvY1DzkFxrRwrdk6FZViI7Lhp+HI5wcRJgIggVHz5ptVw30+pJmjZYLFtlhyZIlqqwuc0iYX8JwKnpHGMZl5pFHHlE5JGvWrMH69euVOGEY1i+//AJHx/PhovZwcLC/PpIZCp/WrVvjo48+KrGPXhdBaE7IX1VBEKoNcyt2Rqdj8+E0tbI61wDZcDC11sSImdiU8yFUbYJdS4iStKxC5Rn570BqjVwvLq0AO4/X/iyvIDQqfCKKqmmVBfezXQOCeSUM0Xr11VcxceJE5ak4deqUJdyKXpPnnnsOfn5+uPHGG5WXhGKE3osDBw6Ue37msDDcq3hZ4OnTp6t8FoZoMSeF7ejZ4atFixZ48803sXnz5lq7b0FoiIggEQShWnBtkTV7knHsbA5OJ+Vi/cFUHDyTaXdtkJrGxen8rzB/T0dLvoh7sQpbNbjsCWJTarZqmCA0ejTaotK+ZcH9bNeACAkJUVW49u7di5MnT6qkdSaXE4Z1McGceR7MQaEIOX78OH7++WcVysUcFeLm5qaqYiUmJtq9xtSpU1UeCZPseY0vv/wSq1atwkUXXYTLL79cnYsCZefOneoa9Nj8888/qmKYIDQnGtZvB0EQGh0UIcXFB8Opaht/T4cSVbR83B3QvbUnvOyU9bXKf68WFDf0AAmCYAXXGek2saSnhJ+5vQGuQ/LMM8/A398fN910k0o6//vvv/H666+rffRqUJB8+umnqrQvK19dddVVarX0L774QiWeEyapc6V2VtqyB8999913491331Ulf1nhi1W3+vXrpzwjFEC8zpQpU5S3htW15s6dizZt2tTpWAhCfaMx0S8pCIJQBTJzClU4VFaebWiWh7MOGbUUrhXk7ajCswK9HO2uP2Iu/7t2f0qNrNRuj4u6+8HTRVLwBKEELO3LalpMYGfOCMO0GphnRBCEhof8lhAEocpsPpJWQoyQiCAXuFmFU9Uk7ULcEOTtVKoYMYdvDenkWyJ0qybg+iVuTjV/XkFoElB8+EYCwT2KfooYEQShAvy/vfuAjqpO/z/+CZPeSAKhd6SqCKK4KmLBLkVxVVzLWnftdd1FXVdde3dXXf3bVta2Kj8VOz/kr2BZKcJKL1JCDSUJJYF0fuf5xgmTkExmkplMCO/XOTkkc+/ce2c4kPvMU778TwGg3r0jWwtqXihwfW6Rhh2Y4XehQd8bfFsPJFBxdYzeLSst0fyvJmvuB+MVWxyaZnbfEcaDeqRWWf8EAAA0DDUHAOqlpKzc3ZjbGh/V5ewo0bysHS5DsWNXWZXgwxYk9MpMjVFqYoy25pdUrgkSSJmYv3Kpj554UCtmV0yoiZ05R51+8+eQfUpr435DNUIYAABUIEMCoN6TtWoKRrzW5hS5YMRyCSkJHsV4KlZH97V5e4mWZ+9UTn5JwOe2QMfOX5MNq1YpR+lKP3qMYlt3UvGmLG38n8fULTPeBT8NZUHTwjUFDT4OAADYg4AEQNB+XL6t1rG+1cu0bC8LTErq0eMeVUtQYEFMdSWl5ZqzKVatjj1P6UPOUMff3KWELgeqcMMKDeiaqPYZ8QqF5dkEJAAAhBIlWwCCYhOsNm7dsyBhTVOwsn0WLGyIbm3i3bSuLdurZlAKCkurBCLrcovcdRWV72k2j/JEK2PYOUrLnilPdIxydxBIAADQFBGQAAjKwjX5frenJ0aHLCApLKnoU6lufV6Rlq0vUKfW8a50bFdxzSVccZmdVdK2s7I27QxZI3rXNgkhOQ4AAKjAOiQAAlZatlufzNoUtvU9gtW5dXyjLMLo1T49Vr/qk95o5wMAYH9ADwmAgBUWl4Y1GIluEaWM5GhlpsYGtP/WgsCb4UOha5vERj0fAAD7AwISAAGzqVjhVFq+W4f3StPAHikB7b8zTKvB18a3dwUAAIQGAQmAgMV6Gt6H4a+Vw9YtSYhtoW07A7vxrzZFeC9R9byu7m0SalyssU0aa5AA+5O8vDy99957jX7e6dOnq0+fPnr44Ydr3G7b3n///Sr7rl27tso+mzZt0imnnKITTzxR69at2+sYJ5xwgntebV8XXXRRWF6bnfeZZ55x39trsHMBNLUDCIitObJ4XXCTqgZ0TVFsdJQWrMl3jedpSdHq1ylJi9YWuFXeLQZo8cviii0TozW4Z6qioqJUEKLMx6E9U90Eruy8Ir/7pSdHa1j/DBcIJcZ53AKIdk1zV+3Q2pxC93P/Tsl+F2QEIJXvLld24VrtLCtQoidJ7eI7qUWIFiaNhEcffdTd6J9zzjkROf/48eN18skn69BDDw3qeRaMXHzxxe77N998U23btt1rnwkTJqisrOL/2jlz5uj66693wVf79u3dYzExDV+7CQgUv10BBGR9bqG2+6y6HohWqTFKS4pR58yqk6napcdrV3GZYqNbVK727jsFKyOp4b8I05Oi1alVvLpkJqiwqExfL6g6jcsa1C0YSk+KUY92iRXfJ+85r13PoB6p7gtA3VYULNX3uVNUULZnEl+SJ1lHZQxXj6Te2hdFeu5Px44ddfvtt2vixImKjw9sLaXNmze7YMTj8ei1115TZmZmjftlZGRUft+yZcvKx2rbHwinffdjCwCNqq6sRbSn2s8tbIX22j/zSIj1VAYh1UfyWiCTHF+//57iY1ro0B6pOubADBdkuMfiPDr2wAwd0D5RHTPidNgBqW5a1pBeaerVISlkI4GB/TkYmbx5YpVgxNjP9rhtDzcr/XnnnXf0m9/8RgcffLBOO+00zZ492z123HHHuSzDTTfdpMLCPZP5LCMwcuRIDRgwQAMHDnTPnTdvnts2btw4ffDBB5oxY0ZlWZGVMdnjvnwfs/Kp/v3768UXX9QRRxyhMWPGqLy8XBs3btTNN9+sww47zD1+1VVXadWqVXW+pnvuuUfZ2dl68skngwpGYmNj9frrr4cluCgoKNB9992noUOHatCgQbrwwgs1f/78yu32nl9wwQXuPbX3/d5771V+vv9x8QABCYCA5NUx0Wpwj5au3MnY/b0FA3NWbFdRSc1rhPhjCyHWtrZITVomelwpmAUiJw9q7dYKqR5kJMR5dHDXFA3pnabOrVlLBAhlmZZlRvz5Pvf/u/3C7amnntIVV1zhMgopKSnuxn/SpEkuQHjooYf05ZdfVvaETJ48WX/961/d/p9//rnLJhQVFenPf/6z237nnXe6oMZuur/99tuAr8HKoKZOneoCoQceeMAFQN5+jDfeeMMFCunp6Tr33HNdoOJPt27dXCBjz5k1a5bffXNycvTb3/5WK1eudD0avhmQULKgbtq0ae79/PDDD9W5c2dddtll2rZtmxYvXqxLL71UxxxzjD766CM9/vjjWrBggdse6WwTmjYCEgB12llU5nexw6Q4j+atzlfLxBaK8USpfLdUXLrbrREyc9nWoM83N2uHyoK4d7Hfc307JdcYiAAIL+sZqZ4Zqa6gbIfbL9zOPvts1zTdo0cPjR492t0k/+Uvf1Hv3r1dg3e/fv20bNkyt29aWpoLGGw/K42yDMmvf/1rLV1akc2xgMbKpKyXIthMg92AWzBh5/v000+1fft2PfbYY+rbt6+7FjtvcnKy3n333TqPZRkPu7Y77rhDu3btqnW/6667zl1vamqqO1c4rFixwgUjd999tws6unbt6rI4Z511lhsA8Morr+joo492gaC9fssIPfHEE/rpp59cpgmoDT0kAAIKSPwp+GV7TfvZqOCS0nLFWA1XAHJ2FGt7gFO2vJh+BUSONbCHcr+GsBtkr4SEikxoly5dKh+zG/bi4ooPVw4//HAtX75czz33nLvRzsrK0pIlS1yJVUPZzbjXwoULXWBk5/Nl2Rg7f11atGjhshEWOFnplmVuamJB1csvv+wCBsuqWDO7lU6FkjdYswDJKy4uzvW5eF+rvY+WVarOXquVqwE1ISABUCdr9o7xSCX1GH5l+YrqWQtrYrcm+bz8EuXll7qfbdX1lASP/rNkW1DHt8b1fp2Sg78wACFh07RCuV9DREdH13hDX5OPP/7Y9X5YD4n1l4wdO9bdcFsZVzBKS/f+AMVu0r0swOnevbuef/75vfZLTAxssVVv6ZaNAbZMT00eeeQRl3U5/fTTNWXKFPezZShCOVa3pvfXl71Wez8tQ1JduErI0DxQsgWgThZQ9O8c2GKFNa0t4m0uNzt2leh/52zRrJ+3a3n2LuXml7hxu/NX52teVnCNj7Ee6fBeLRUdgvVRANSPjfa1aVr+JHlS3H5NifWVWImW3eRbJsEyGGvWrHHbvP0ONobcl5Vv+TZo2w249zm1sRKt9evXuxIwy+DYV4cOHVwp08yZMwO+XusPGTx4cGU2ojqbquVlJVUWAFgQ46/MK1g9e/Z0f3ob/70BmZXJffHFF+rVq5d+/vnnytdpX7bdMjwbNmwI2XWg+SEgARCQ5IRqY7RqEVftA7T8wrLKdUA2byvWlLm5Kqyl0b0wiEZ2Ex1gGRiA8LF1Rmy0rz9HZZzQ5NYjsfU2bCKUNV2vXr3aNbVb07nxlnVZBsPW9PAGHVaq9N1337myKCtNsmlT1h/iz6hRo9xY3RtuuMH1UljpkmVm7BjBZC8sOHrwwQfdJK26WB+JBQFWimb9KqFimR5bF8UmZ/3www+ugf6uu+5y5WdDhgxxvTNWtmXb7XXa+ia33nqrmyjmW8YGVNe0/ncA0GRlpsa6kip/OrWK1YDuFfPsvexzRu+CirNXbHMN6LXx+YAvIDuLyrVjV3D9JgBCz9YZOSlz9F6ZEsuM2ONNcR0Su5Fu3bq1G1trCx9+9dVXbiFE3wzAmWee6TIMI0aMcBOx7IZ7+PDhuvHGG92ULAtYzjjjDL/nscyIBTo2Wevyyy93WRk71quvvlqZcQiUZRxuueWWgPY98sgjdckll7ipYp999plCxYIiyybZe2BjjS3zYc3slpGxgM36WBYtWuQa3a+++moXxFiwZ6OIgdpE7WYOG4AA2QjfGcu2urG8NYmJjlLXzAT9vGFnlcet6MGCmWAXVgzEUX3T1JamdqBJaG4rtQNoHAQkAIJeIHHK3BzXiB5pNmL41EMz6SEBAGAfRkACIGhbC0q0aE2+srfWvjZJOFn4kZYUrQHdUpSRQhkAAAD7Msb+AghaWlKMFqeUaXZugY6NSpSn2iSagI+TWDGByzIcGcmxWrq+wC2qWJuWCR4N7JHqxhBXn34DAAD2TWRIAARtQnaurlu02n3fNsqjP8W1VkIQdeIWShzYOVm9OlZdl8BGAC/fUKDSst1KTYzW0vU7qzznuIMzXDAEAACaDwISAEG7aO4KTc7ZM+qydZRHF8a0VB9Pzc3ltgyJrWViQUb/zslqnRpYmdW6nEKt2rRLtq7ZAe2SlNmS8iwAAJobSrYABK1NbNX/OrbsLlN8+1id0SVTC623JK9I5bt3KyM5Ru0z4tUhI04xnuAn7XRsFe++AABA80WGBEDQlu8s1MjZy5RbUjHGt0dCnD4d3EvpMXzGAQAAgkNAAqBecktK9fnmbYpvEaXTMtOUWI8MCAAAAAEJAAAAgIjhI00AAIAA2Ge4H3zwgXJycsJ6nunTp6tPnz5au3ZtrftcdNFFGjdunPv+/fffd/sD+yoKvgEAQGiUl0vZG6SdO6XERKlde7kxec3EzJkzXRAwZcqUSF+KnnnmGXk8nkhfBhASBCQAAKDhVqyQvv9WKijY81hSknTUUKlHDzUHTanKPS0tLdKXAIRM8/nYAgAARC4YmTypajBi7Gd73LaHmZUsTZgwQZdccokGDBigoUOH6tlnn62yz1dffaUxY8a47SeddJKefvppFRcXVzmGlT9VP649ZmVUF198sXts+PDh7jH7suPcf//9Gjx4sK655hq3ffny5brqqqt0xBFHuMdvuOEGrVu3rkq51QMPPKBbbrlFhxxyiIYNG6YXX3xxr4Bn6tSpGjFihA466CCdccYZ+vrrr2ss2QL2dQQkAACgYWValhnx5/vvKvYLs0ceeURnnXWWPv30U1144YWurMnKrMy0adN000036dxzz9Unn3yiu+++W59//rluu+22gI49aNAgdzzz3nvv6fTTT3ffr169Wps2bdKHH36om2++2QUe5513nmJjYzV+/Hi9+uqr2rx5s7ue/Pz8yuO9/fbbSklJcUGNPe+5557TSy+9VOWc//rXv3TXXXfp448/Vrdu3dz1F1QP+oBmgIAEAADUn/WM1HWTXJBfsV+YnXnmmRo9erQ6d+7sMhSpqamaPXu22/bCCy+4YGTs2LHq0qWLy6Dce++9+uKLL/w2j3tZgNGyZUv3fUZGhuLj9yzaapkRO2evXr301ltvKTExUY8//rj69u3rMiB///vfXSP8xIkTK5/TvXt33XPPPerZs6cLoizjYQGIb5bkjjvucFkW2/faa6/Vrl27XPYFaG7oIQEAAPVnDeyh3K8B7Obel2UgSkpK3PcLFy7U3LlzXVmXl/fm327yO3XqVO/zWvbCa+nSpa7EygIYr8zMTBdU2DYvCzSioqKqZGAsQ5KXl1f5mD3Hy4IrU1hYWO/rBJoqAhIAAFB/Nk0rlPs1gG8QUD3oKC8v1xVXXOGyEdVZwFCT0tLSgM7rmy2prfHdzh8TE1P5c3R09F7bje/krBY1TChrSo31QKhQsgUAAOrPRvvaNC1/kpIr9osgK6dauXKlunbtWvmVnZ2tRx99tLIvwwIG3z6PrKysKsfwzWjUxprg582bV6VZfsuWLe5Yvhkc28eXlZZZlsZbFgbsTwhIAABA/dmn+Dba15+jjo74eiRXXnmlJk2a5CZvWWDyn//8R7fffrt27NhRmSEZOHCga1hftGiRK/GyHg/frIv1hpjFixfX2lx+/vnnu23WLG/7WZnYjTfeqPT0dDcpy2vWrFmut2TVqlWujOzNN990GRxgf0RAAgAAGsbWGTnplL0zJZYZscebwDokp556qp566il9+eWXGjlypAsYqo8GtgDEMhTW/H799dfrnHPOUbt27Sq39+7dW8cee6ybdvXOO+/UeB7Lcrzxxhvavn27m7Z1+eWXu4DHpmp5+0C8o4Otd2XUqFGu4d6CIwtmgP1R1G6KEQEAQCg085XaQ8UmanXs2FEPP/xwpC8FaBJoagcAAKFhwUeHjpG+CgD7GD62AAAAABAxlGwBAAAAiBgyJAAAAAAihoAEAAAAQMQQkAAAAACIGAISAAAAABHD2F9gX7N5s7Q6S0pJlXr2lDyeSF8RAABAvTFlC9gX5OZKWzZLZWXStKl7HrdFx0aNlqKiInl1AAAA9UZAAjRl9s9z4gfSxo217zPsWKlf/8a8KgAAgJChhwRoKkpKpLk/VWRAViyveOzbb/wHI2b+/Ea5PABAcEpKSvTaa69V/vzMM8/ohBNO0L5s+vTp6tOnj9auXRuxa7D30N5L8/7777vrwb6NHhIg0hmQZUulrFXSli3S9u0Vjy9aKLXvIG1YX/cx8nKlTZuklBSpsFBKT6+6vSC/4vGMVnuXdi1eLK34WSoqltLSpN59pI4dQ/gCAexPrOhie85OFReWKjY+WqmtEhW1H5eUfvLJJ3rooYd0ySWXRPpSgCaNgASIpE8/kdbV8ilTIMGIN6j5eGJFf4l9b4HHqadVBCiWYVm4oOLx+HjpsMOl/gdWBCYzZ0izf9xznE0bpaVLpOOOl/r0Dc3rA7DfyFm/XSvnZbtgxMuCku4Ht1OrDqnaH1EVDwSGki0gUiwYqC0YCVZpaUXQYXJzpO++kb7+Slowf8/jliWxAOXLyVJxsTRnds3H+nFWaK4JwH4VjCyZubZKMGLsZ3vctofb1KlTNWbMGB1yyCE68sgjNW7cOG3btq2yzKh///6aPHmyTjnlFA0YMEAXX3yxNmzYoPvvv1+HHXaYe87zzz9f5ZgffvihRo0a5fa3MqF//OMfKrMPf35hz//DH/6go48+WgMHDtTll1+uxZZ5/qWU6Pbbb3ffW0mRXYPXiy++qGHDhrnjXnTRRVq1alWtr8u2P/LII+48gwYN0tChQ/X222/rxx9/1OjRo93rHTt2bOUxrJSq+vmqP5aTk6MbbrhBRxxxhLsGe/6MGTOqlJr97W9/0/HHH++Ob+/rd999V2vQ9dJLL2n48OFuX7umjz76yO/fVUFBge677z73Wuw1XXjhhZrvU348e/ZsXXDBBe7ajjvuON17773Kz8/3e0zs2whIgMZmAcLUryoyFOGSlSUtqfiluBfrT/nskz2BSnVFReG7LgDNjt2QWmbEn5Xzs8OaLcjNzdV1112ns88+W5999pmeffZZzZw5U48++mjlPhZIWMDx+OOPa/z48S5wsJvnmJgYvffee+6m/Omnn9aSJUvc/tb7cdddd+m8885zN9g33nijXnnlFT388MNuu90gn3/++dq4caM77r///W/Fx8e7m+t169bp9NNP1x133OH2/fbbb92Nt7FtdsNtQckbb7yhzZs368477/T7+l5//XX169fPXYfd+FsQdc8997jj2zE2bdqkJ554IuD3y55bVFTknvvxxx+re/fuuuaaa7Rz5063/YEHHnCv509/+pPbfswxx+iqq67SihUr9jrWU0895QIke69sXwv07Phvvvlmree/6aabNG3aNFfOZkFf586dddlll7kA0v5eLr30UndOe73297VgwQK3nYxT80XJFtCYrEfEyqsi/UmPv0b5tu0a80oA7OO8PSP+FO8qdfu1bJ0UlmuwoKC4uFgdOnRQx44d3dcLL7xQJZthLKg4+OCD3fe/+tWv9NNPP+mPf/yj63P5/e9/7zIgy5YtU+/evd2n/hZc2Cf1plu3btq6dasee+wxl12wm++8vDyXCcnIyHD7WFBw4oknuptxO26Klc5KyszMrLwGC4DsJjs5Odn9bIGQ3dT7Y8GIZV+MXZMFC5Y5sQyHOe200/Tll18G/H6tXr3avUYLBCyIsoBo5MiR8ng8LtCaMGGCCzBOPfVUt//NN9/sgoHqWQoLYCxwe/LJJ10mw3Tp0sUFXRa8ed87XxbUWDBi2y1DYiyASU1Nde+nPW4ZJwuAvO+79321LI73NaN5ISABGtP0H/wHI9bbUdsnQDExUnl5Ra+IL+sNiYmVdoSgJCI6Whp+YsOPA2C/UVcwEux+9WE37CNGjHA3sXbzbze0doN80kknVdmva9euld8nJiaqU6dOlU33dmPurrO42GVctmzZosGDB1d5/pAhQ1w5k91UL1261N0se4MR7zGszMi21aZVq1aVwYixG/FCK6n1w27yvRISEtyfFkz4nteuK1CWTbrttts0adIk9xotMLD3Ly4uzl27HcvKr3zdcsst7k/fUrCff/7ZZVpuvfVWtWixp+imtLTUvY/2urzvq5f3vbESNy87r7e8beHChcrKyqrMKPlavnw5AUkzRUACNCbr7/DHXzq6tl829ousjl9mATt3rP1mCM2xAOwXrHE9lPvVl32Kfu2117pP37///nt3w20321ae5RVtH7r48L2J9lVbaVC5fSj0y3H87VP9PL4sCxEsy6pUV9u116R6psgCtW+++cZ92Xv1z3/+05W5vfvuuzWeqzbe98BK3Xr06LHX9tjY2L0e8/feeN8/y9Z4MyS+fIM/NC/0kACNqUMHNVn2S+KX8gIACJSN9q0r2IhNqBgBHC5WevXggw+6m2IbsWv9GfbzDz/84Bq4g9W6dWv3ZY3jvmbNmuVu2C1jYU3i1kjue3zLFlhz9gEHHOB+jsTIY29A4Vte5ds0b5kL691Ys2aN63OxfhQr97IA5+uvv3ZZJDvGvHnzqhz33HPPrbKmirH32wKM9evXu+d5v2zAgJVe1RQ09ezZ0/3pe3zLqNjQgC+++EK9evVymRff49l2u2YbIoDmiYAEaEyHDLKPx9QkDT0m0lcAYB9kN9022tef7ge1C+vNuZVAvfXWW66/w8p9rCzImtutpCq9+tpMAbKeDWv6tuPaMa1nxLII1uRuvSH2KX5aWppr0J47d65rxrZJWNZXYft4y8KMBSl1lWWFSps2bVwPjWWGrMTJgiqbmOV9/y1rYcGA9Yj897//dRO4rA/GrtvKpKwkzPpU7DlTpkxx/SbWI2LvqU0G82Xvg/XA2L4TJ050QY71n9jfg11HTayB/uSTT3aTsyxgXLlypbsWC+asJM6a161sy7bb9c+ZM8eVhFlQZX+faJ4o2QIak02+qt4D0hQkJLL2CIB6s3VG+hzeae91SBKiXTAS7nVI7FN3W7nbAgYLIOyTeWtat8b0YEqbfNmNsd282429ZVvatWunK6+8srK53G7GLWCxqVvehQ+tRMwmTnn7O+wavGN57Sa9MVjgYdPF7JptiphlGKw/43e/+13lPtZEbxmHq6++Wjt27HCZDmu0t/HH3n4RKy27++673fa+ffu6rJPtZ1PBfNmxLeizoMSmfbVv3941/V9xxRW1XqNdm12jDRmwjI29R5ZRsZIs+3r55Zfd8c466ywX1NlIZpv4VVMJGJqHqN3MUAMaz+RJNmJETU7LNGns+ZG+CgD7OFZqB1AfZEiAxtSxc9MMSHZXNGoCQENY8BGu0b4Ami96SIDGYqVam/2s/+GvnKohAvl0svWeGfkAAACNiYAEaCw/zpIW17J6em1sfnu/fg07b11VmdZkf2jVWfsAAACNhYAEaCxZe8YuBsymsixapLA6Ybit1BXecwAAANSCgARoLL+Mfwzarp1175Pasn7HTkySujJGEQAARA4BCdAYrGxqx47wHNtKrn4ZMRm0rl2b7rooAABgv0BAAjSGjdnStm3ha5ZfML9+z80NfgVjAACAUCIgARpDVBP9p9bQCV4AAAAN1ETvkoBmpm1bKT1dTc5hh0f6CgAAwH6OhRGBcLNSrVkzpLw8NRm2NsmRRzFdCwAARBwBCRBOq1ZJkydJ5U1sJfT27aWDB0T6KgAAAAhIgLCxcb3/+0XdCxNGQn5BpK8AAADAoYcECJdvpjXNYMR0Y+0RAADQNBCQAOGydm3Dj5GSIsXEKKT69JUOHxLaYwIAANQTJVtAuLQIQbwf6sUUk5OlYceG5toAAABCgLsSIFwac8xvoKutH3s8wQgAAGhSuDMBwmHFcik7O6inrFaR/l+LjdqtwPpOyrRb/xOVqz971mhK3K66n9C5i9SpU1DXBAAAEG6UbAHhsG5dULtbEHJVzCo9U9JVUYqqc/9S7dYYzzIt9RS6nyeU5mlci/a6pDyz5ifExkpDjgjqmgAAABoDAQkQDhkZQe2+RsUaVp6ijooNaP8fVVAZjHj9y7Nl74DEFkC0Bvb+B0pxcUFdEwAAQGMgIAHCwSZZZa2S1qwJaPcuitO4sg41Zk5qypjU9A+3zPpISiQlJkppaVJyinTgQVKbNvV6CQAAAI2BgAQIh+ho6fQRUm6OtHqNNGuGVFYWcG9Irkpla7u3VQ0jf2NjNaA4Sd12x2pVVHHlw+cPPFk66OTAG9wBAACagKjdu5vqym1AM5KTI82YLq1ZHdBiiatUpG6qocQqPl4adWbFITev0/i8JVq7K0/Hdx6gkT1ZWwQAAOx7CEiAxpSfLy3/WfJES9kbKr73p4VHKv8ls2ILJI4YRQkWAABoVghIgEgpLZV++q+0OksqKq7InLRtK3XvJq1bLyUkVPSiWNnXrl1Sl64VjwEAADQjBCQAAAAAIoaFEQEAAABEDAEJAAAAgIghIAEAAAAQMQQkAAAAACKGgAQAAABAxBCQAAAAAIgYAhIAAAAAEUNAAgAAACBiCEgAAAAARAwBCQAAAICIISABAAAAEDEEJAAAAAAihoAEAAAAQMQQkAAAAACIGAISAAAAABFDQAIAAAAgYghIAAAAAEQMAQkAAACAiCEgAQAAABAxBCQAAAAAIoaABAAAAEDEEJAAAAAAiBgCEgAAAACKlP8DdC62uWHjnmsAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAyQAAAGZCAYAAAB4wfWGAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8BZJREFUeJzsnQd4k1Ubhp+ke+8BbWnZe++hCAqiDEFFERE3bkX93Xvg3nsrbkERARcqsmTvvaGlg+69m+S/nlO+kKRpm+5S3vu6Yptvnu8klvc579KZTCYTBEEQBEEQBEEQmgB9U9xUEARBEARBEASBiCARBEEQBEEQBKHJEEEiCIIgCIIgCEKTIYJEEARBEARBEIQmQwSJIAiCIAiCIAhNhggSQRAEQRAEQRCaDBEkgiAIgiAIgiA0GSJIBEEQBEEQBEFoMkSQCIIgCIIgCILQZIggEVoMV111lXpVxujRo/Hggw9aHd+5c2dMmzat0nPuvvtudYzleZbwXO7/888/Kx0T91u+evTogXPOOQdPPfUUsrOza/SMCxYsqHC9rl27YuDAgbjuuuuwefPmCucUFxfjiy++wCWXXIL+/ftj0KBBatwLFy6EyWSye59jx46paw8ePBglJSW1GlevXr1wwQUX4IMPPoDBYEBz+E5wXG+//XaTjEUQBEEQBPs4V7JdEM4I9Ho9tm3bhhMnTiA8PNxqX0FBAf79999Kzz1y5Ai2bt2KTp064fvvv8f5559v97hu3brhiSeeML8vLS3F7t278dprr2Hv3r347rvvoNPpajTud955ByEhIep3o9GItLQ0vPvuu7j66qvx448/okuXLmoft99www1ISkpShjlFAo/nc1Fkbdq0Cc8880yF+//0009o3749YmNj8ccff2DSpEk1GheFTmFhIbZs2YK33noLRUVFmD17NpqaH374ocLnLAiCIAhC0yKCRDijoVg4dOiQMrqvueYaq3002j08PODr61upVyAiIgI33XQT/ve//ynjPTo6usJx3t7e6NOnj9U2ejTy8/OVsb59+/YK+6uDXpHIyMgKzzJmzBh8++23ePrpp9W2Bx54QIktGuIxMTHmY+mhad26tRJFo0aNwrnnnmveR28GvSeXX365ElwUW44KEttxDRs2DMePH1fXaA6CpKbzLAiCIAhCwyMhW8IZjaenJ0aOHKkEiS2//fab8no4O1fU7ZrRTmP+vPPOU9eh0V8TGLpFEhMTrcKe1q9fX6tnoRAICAgwX4/el9WrV+P666+3EiMaFGBXXnmlGrslPCclJUWJFgoRhoFRtNUWCjpbD8zGjRvVuCjMOA8Mp2MoFb03GkuWLFH3p1dnyJAhSvQlJydbXWf+/PkYP368OQyO16gqPMwyZIvzzPdr165V4W69e/fG8OHD8fLLL1tdg2P66KOPlNjjffid+Oqrr2o9H4IgCIIgWCOCRDjjufDCC81hWxp5eXlYuXIlJkyYYPcc7ktNTcXkyZPh7u6uciV+/vlnh/ItNI4ePap+RkVFqZ80qClqunfvXqvnyMzMVK82bdqo96tWrVI/aezbw83NDY8//jiGDh1aIVyrY8eOyvgeO3YsvLy8lIfDEWi8l5WVqZc2h7/88osSPhr79u1TYsjf3x+vv/463n//fQwYMECFe/3+++/qGIqg+++/X93/448/xkMPPYR169bh3nvvNV/nww8/xGOPPabGzzwV3oPHcltNoNBhbg2vwc/7k08+UUJH48knn1SeLIojHjNu3Dg899xzKkROEARBEIS6IyFbwhkPhQBDsyzDtv766y8EBQUpQ9Ue9GYwd6Rnz57q/cUXX6xyN5jcPnHiRKtjmU9BA12DiewbNmxQhnjfvn3NnpLAwED1qonhryWtMwn9lVdeUTkxDLUizBshtqFdVUFBs2zZMtxzzz3qPeeFgo2igmKA76uCXgRbOEfMbbEUJAzloieC4yX0TPC+9FrQ40FBQqE3a9YsuLq6qmMoYHbu3Knmk2LnvffeU8/66KOPqv0jRoxQx/D9tddeq0SVI0ydOhW33Xab+p3i5u+//8by5ctV4j9F47x589R8cCzafejxoSCaPn268koJgiAIglB7RJAIZxT2ksdp+NKLYClIfv31V+X1sHd8RkaGyi+5+eabkZOTo7bR+GU+CT0ctoKE4Um2Xg8a4jTKmetR04T2ygx/3p9GPsOQiJOTk/pZkwpXixYtUsdTpGnPxnvRY8AQNlbqqgqKLC3ZnkLp4MGDahuNe84N82noVeKL+2nwM/eG4WW8LxP+CUO56D2hx4IhUgyroxDgT8LcFibK83OzFHuaN+i///5zWJBQFFrCpHcWNCD0ylAA2bsPn4vCiSF7giAIgiDUHhEkQouBuRBZWVmV7mc4VWUr/BQft99+uwrbYigT8woqS8Km0U7DmbkItiVkExIScPjwYVWhSoNihCV+CcUHr9+qVStlnNcWS8PfxcVFrdKHhYVVECiEOSUdOnSwex3mZISGhppFET0/9L5wPmxh2FZ1goReI0uPDEOxuI2eBIoaei4oJFjZi14XGvk8nqKAuTpaGWK+Z94GyxV//vnn6vfg4GAlAlktTPucNa+FLcyBcRQKUluxqI1Duw+9NvawzWkRBEEQBKHmiCARWgw0WA8cOFCpGKFng8fY4+yzz1a5EvSSUNjQSNZCqWxhjgUNZvYosYSr6rfeeqsq46uFERFeVwvtqi9sDX970KNAVqxYYVeQUAxcdNFF6Nevnwp/YilihlPdeeedSkhYwhA2JnLTk8FKWjVBe3aGlZE5c+ao0LY33nhDeYm0pHrbXJazzjpLvVg+mJ6KL7/8Es8++6xKPtcqnzFMzV7CfmWfc03R7jN37lz1OdrCSmWCIAiCINQNSWoXWgxs+EdvABPUbWFeAEOCWK3JHsxTYOgNDWUmVle2Is4cBooe5oywaaDlixW3eH2u/NML0NQwZIlCi4neLL1rC3MgmDOilfSl0KL3hvkets/Gilj0HFBs1ZQdO3aon5pwYJgTr6lVJyO7du1SglGrsvXiiy8qbww9FfRqcW5ZwpjwM6YooWeIHgoKHu1FLwtLGcfHx6M+0IQZ58nyPhzrm2++WaVHThAEQRAExxAPidBiYPI1V7LZF4QvhkrRwGVzPlZOYj4CvQFVnc/zaHhbejgsodFOQ5jVn+xBj8OaNWtUvgVFS02gkRsXF6e8GXUJ57KEoWIUGJdddhlmzpypDHn2P6EniHkyzO1g1Sh6kFhml7kj9u7NEDMKvsWLF6vqV5WNjx4UNmMknHuGrzGsjeFlU6ZMUdtZxpeij+KGoW30yjAEjWFj9IYQCjuGarF5IwUTQ+T4GTJpnfv4kw0fKQqY4E6BQ3HC97yO1hiyrjAfh/dn5S6G49FrxrwX5rfQQ2XPOyMIgiAIQs0QQSK0GCgUvv76a1WalfkKLNVKccFmhQyvmjFjRpXnM3yIITo0vi1zQDSYhE0jnhWhaBDbg0KFIoD5FjUVJKzsxPK2DE2igV0fMKSIyeQUahQczMWgN6hdu3Z49dVXlQjTPEis/qW9twcT0Rk6RVFyxRVX2D2GeTga9FYwt4XPctddd5nnjCKDAoMhWxRCNOxvueUW1euElbboyWLyOsOxPvvsM3VNigxWPOPcaNdhjg+FDhtBUqz4+fmpsC9WxPLx8UF98fzzzytvEj9T5hix+hrniffXCgcIgiAIglB7dCYte1MQBEEQBEEQBKGRkRwSQRAEQRAEQRCaDBEkgiAIgiAIgiA0GSJIBEEQBEEQBEFoMkSQCIIgCIIgCILQZIggEQRBEARBEAShyRBBIgiCIAiCIAhCkyGCRBAEQRAEQRCEJkMEiSAIgiAIgiAITYYIEkEQBEEQBEEQmgwRJIIgCIIgCIIgNBkiSARBEARBEARBaDJEkAiCIAiCIAiC0GSIIBEEQRAEQRAEockQQSIIgiAIgiAIQpMhgkQQBEEQBEEQhCZDBIkgCIIgCIIgCE2GCBJBEARBEARBEJoMESSCIAiCIAiCIDQZIkgEQRAEQRAEQWgyRJAIgiAIgiAIgtBkODfdrQVBOJ3ILMrD0titcNE74/yYvvBycbfafygrCdtSjqBncAw6B0Y02TgFQRAEQTi90JlMJlNTD0IQhObNsewUXPHry8gszlPvI72D8M2F/0OIpy/0Oj0+3/U3Xtz4k/n4PiHtkFyQqcTLtT3OxRVdRjbh6AVBEARBaM6IIBEEoQJxOan4/ehmmGDCxPaD8PGOP/H9/lVWx+gABLh749be4/Ha5oUoKCuu9Hofj7kdZ0V2b4SRC4IgCIJwuiGCRBDOcAxGI1bE78KmE4dwJOcEdqfFIbUw27zf28VdhWGtTdpX63tM63wWnhw2vZ5GLAiCIAhCS0JySAThDBQgOSUF+PnQOny9519kFOWiyFBa6fF5pUXKG1IXDmYlIbUgGyGefnW8kiAIgiAILQ3xkAjCGUKJoRQPr/oSvx3bDGMN/7fvHtQGu9Pj6nT/9n7hWDT5MTjppbifIAiCIAinEEEiCC2c7alHUVhWgq/3LMffcdtqdQ16SOrjD8XjQ6ZheldJcBcEQRAE4RQiSAShhVJUVoJZf72LDScOoDlx/8CL4ePqAR9XT4yO6glXJ5emHpIgCIIgCE2ICBJBaKF8v28Vnlz7LZoblt6WLoGRuKX3BcgrKcI5UT0Q5OHbxKMTBEEQBKGxkaR2QWihHM1JRnPEcgVkX0Y87vr3Y/W7p7MbPjv/TvQJbddkYxMEQRAEofGR7FJBaIEk5WWglVdgg9+HJYGrwk3vonqVOAL7mLy9dUk9jUwQBEEQhNMFESSC0MJ4eeMCnPvjo3hhw3zoqyjYq6ummK+TTo9J7Qcjyju4ypLA1/cYgx5B0dDrrK/HDu5/XvIUxrTp4/DYk/IzHT5WEARBEISWgQgSQWhBsKnhp7v+Mpf1NVZRG+vijkOrlCSzep2PTckHcTwvrcp7sqGim965Qilho8mIBQfXYN6B1XbPY2K7LV4ublXeSxAEQRCElofkkAhCC2FV/G48t35+tccFuHnjog6DcU//i7A3/Tj2ZBy32j+5wxDl9fgrdhsS8zKqvd72tKN2t1PsFBvLqhxHbkmh1bb8kqIKx3EMj6/5BuuTDqBTQGs8PnQaeoe0rXZcgiAIgiCcHoiHRBBaAEwOv/nv96pNZG/nF441V7yE2f0mYX9GAm7qfYEKzdJo7RWIhwdNhU6nw08H/qvTmCK9g9EtMKrS/fZERVu/cKv3axL34rIlL2J1wh6UGstUc8Zb/35fNXkUBEEQBKFlIGV/BeE0h6FR0399BdtS7XsqbJnd7yJ8vusvZJcUwEXvhAti+iPIwwcB7j64tNMwHMtOwYzfXq0y3MtR6CWJ8g1BXE5qhX1dAiIR5ROMv042a6QwMpiM6B0Sg5fOvhbbUo7igVVf2L0uc1Zu7DUW58f0q/MYBUEQBEFoWkSQCMJpDjuwP7v+B4eP93X1RE5JgdW2ERHd8PGY25VnZObvrzdaM0UmwtvmnhBvZ3d4urghpTC7yvM/OO9WnBPVswFHKAiCIAhCQyMhW4JwmrMqYXel+yzDsQirbtmKEcKQqPUnRQhLBteWqqp62cOeGCF5ZUXVihGy8NC6Gt1PEARBEITmhwgSQTiNOZJ1ArvSYu0mjI9vNwCLJj+mqml5OLuijU+Iyh1xsynPq5FSkKV+RvpUXua3OqZ2GoFQDz80FoVlxY12L0EQBEEQGgYJ2RKE05Tk/CyM+ekxlBisK1n1CWmLz86/S4U8WVJmNGDMN7ORVFax8pWrkzOu7HIOhkd0xeGsJDy/4cdajYlSx9/NG5nFeep97+AYlUOy5MhGNATMgfnrkmcQ7h3QINcXBEEQBKHhEUEiCKchhWUlmPjzM4i30yPk18mPo31Aqwrb92fE46Jf5lTYHujsgoyyU1WrvF08UGwoQanRUC9jZW6Kp7M77ln+MZKrCMPq5NcaB7ITa3z9aJ8Q/DjpIbt9TQRBEARBaP5IyJYgnIa8vPEnu2KESeL/Je1VgsWWVl6BcDcZrbb5GYqQaSFGSF5pYb2JEXLHsg/RJTAC/1w2B50DIio97uoeo2t1/djcVAz/7n58snNpHUYpCIIgCEJTIYJEEE4zDmQmYMmRTZUmibM54szfX1O5Ja9s/BkfbP8daYU58HXzRA+b0KbepuJ6KO57Cic7f1KKDKWY+ccbcNY7qRAre1CofL9vVa3vW2IswyubfsahrKRaX0MQBEEQhKZBOrULwmnEU2u/w3f7VlZ73M60WFy25CXVo4R8uXuZ6u+xKd86ZGqjewi6+4WrhoOO0jUwEnsz4q22hXj4YkqHofB188ArmxZWOGd3eiy2px5FmdHaQ6MxpcMQvLDxJ9SVnanH0MG/YriaIAiCIAjNF/GQCMJpwosbfnRIjGhoYoRkFOfh3/hdFY5haNclHYehe1AbeDq5OpxM76Z3sdqWWpiDj3b+aVeMaHy7dwX2ZVoLGY1dNRBEVdE7tGL3d0EQzgxGjx6Nzp07m189evTA+eefj08++aRB77tgwQJ1P8txvP322w16T0FoaYiHRBBOA9g9/Yvd/zTItZ9e973599ZegUpclBnLKg3loripDVnF+Xa38579Qjs4VInL39UTWXb6qJBxMf0Q4RWEt7Ysxn+Je9HOLxy39RmPSJ+gWo1XEITTj+uuu069SFFREXbs2IFHH30UHh4euPLKK5t6eIIgVIJ4SAThNICeBUdzPdyMZQgqK6zVfRLzM/D7xU/i14ufQLhn/ZXS7R3SFue26V1hu5uTC4rKSvHMuu/V79Uxqk0veNjx5LAB5EODpypx9d7231R42M+H1uLaP99Q5Y4FQWgcDEYT1h5Oxy/bEtRPvm9MPD09ERISol5RUVEYP348Jk6ciJ9+qntIqCAIDYd4SAThNKBncBScdDoYqqjS7WUswc3Zu3F57iG46p3w5NDHsfB4xTAtJ5MRQYYipDh72r1OfmkhOga0VtW26oPJ7Yfg3gGT8cSab6CDDqaT0orNGovKSlBsKK/yxZ9dAiIwIqI7gj188cLGir1QfrbTmZ3Xee/cW1RDxsVHNljtO56bhs3JhzG4Vad6eRZBECrnj11JeGrxHiRlF5m3tfJzxxMTu2Fcj6bL7XJ3d6/2mFWrVuGdd97Bvn374OfnhylTpuDOO++Ek5MTSkpK8Oabb2LRokXIy8tDx44d1b4RI0Y0yvgF4UxAPCSCcBqwKfcvjO0aAk+X8ipV7s7W/+u6wIRvkv7GjTl74WsqhbuhCI855aGDX0Uj4KbsXZWKkW5BUegcGKl+r6tnwUXnVJ6sfvbVeHzNN1h2fKdZjGj5KyY7HprYnBS7YqQyRrTuhqGtu0Cn08HbpaLh4edm/1kFQahfMXLL11usxAg5kV2ktnN/U8CQrSVLlmDq1KmVHrN161bMmjUL/fv3V/kgzz77LL7//nu89957av9DDz2E//77D6+88gp+/vlnXHDBBbj55puxfPnyRnwSQWjZiIdEEJo5ycWJOFGcgC5h3ugU4oUSgxG/7DyBxOxi8zGl0GGtRzi65GaZt3k5u+DDsTfg3PmPmrdFlObizuxd+MuzDQ66+lvd55yIHnj2rKvU73qdHlM7jcBXe/8173fW6VFm08ekMm7sORb3Dphifr8qfrdD5wV7+OGvuG2oCW7OLjjnh4dVD5b+oR2szmeYWJeTAksQhIaBYVn0jNjz33KbjhUCF+/BmG7hcNLzXcPx4Ycf4rPPPlO/l5aWqlfv3r1V2FZlfPXVV+qY+++/X71v3749nn76aaSnpyM2NlYJmoULF6Jr165q/7XXXqs8KZ9++inOOeecBn0eQThTEEEiCM0ck4UI0Ot1cNc7qfAtW5wtN3kGAb2vQIR3EO4bMAVvbFmkmh26e/jDpHfGUxkbcEfIWUh38oCLyajEwzW9xlld78FBlyLaNxRrEveivX8rXNN9tOr0zp4mVRHg5o3Y7FRM/mWO8l7c3ne8us7h7BNVnhfk7qNCq45Uc5wlrbwCrJLh6WEZHdVLeXo45jHRfRy+liAItWPD0YwKnhFbUcL9PG5o+4YtMjFt2jRcdVX5wkpZWZkSFK+//rpKaJ8/fz5cXSvmoB04cADDhw+32sbqXOT3339XP6dPn261n0LH19e3AZ9EEM4sRJAIQjMnzC0CQa6hSC9JMW/zdbf+XzfEww8TznkN2LsQcPUGBlwL+JaHa13fcywu6jBE5VN0C4yC7t8g9PvvDfwb/wv2u/oj8qy7EGAjRoiTXo8Z3c5RLw0a+NWVHs4pzsOBwyswLfcgCo78ijmFGXhw8FTcuexDcwd5JqEbLITW9T3G4M6+E3EwK7HC9fUmI4w6+9GlSfmZFbYtO74DXYIicUHb/lWOUxCE+iElt6hej6sLzP+Ijo42v6e3g9soKNasWWPXo+HsXLkpZDqZt/fNN9/Ay8vLap9eL1HvglBfiCARhGZCsaEIWaUZCHQNgYtFnw/mRviWdMPhnFw4uebBBCPCfN1xJL0AhaVG1eX8ozG3I8DLH2hrvcqnwSRxvhRjngK6jIdr0nb0jBoMtOrl8BjvG3AxyorzsPTIBviWFaJdaTZWeFqHRDHz5JiLL14O6Iv5SX/it61f4bOCXHg6u5kFCcUIE++Hte6GSzoNM3syegRH45nhV+Lt1XORBR0uzI/FQu92lY6HTiF7YSLz9/+nBI4gCA1PqI97vR5X32iiwlhJY1aKlp07d1ptmzt3rgrVeu6559T71NRUdOvWzbyfXhcKkrvuuqtBxy4IZwoiSAShGbAvdwdWZ/wDg6kMrno3nBcyEVEe5U3+vtu3Ak+t/R6X9mmFKHcP+hfQO8IFIV6u2HQ8C876QgR7+NTshlGDyl81xNPFDc8UHsIzcfPUewN0eNu/JxYF90M2dMgvPZXXYtDpscgrBj96t0de0v4K1yoxGtA3rF2FsCrmrkw1ZgM/zABMRhx18cV2t2C746ms5ph7w4apC4JgwaC2gaqaFhPY7f0/yf8dw/3c1XENTUFBgRIPmhCJi4tToiI0NBRDhw61e84NN9yASy65RFXSuuiii1SYFxPaZ86cqSpqjRo1Ck888QQef/xx9f6PP/5QuSrPP/98gz+PIJwpiL9REJqBZ+S/k2KElBiLsTJtqXlV76s9y+Hl6oSoAIqRU7T2d8eknuEY290fC5O+Vc0MG4XUfeZfnWDC7KwdWBbibbfPSK7eBXn6yjvAswywGUMZcHQVSuI348HUdPSMno6u0dOR7t0Kbbyt487djaWIKcmG88mwr5hS67yWGzK2cjm0Lk8pCIKDMFGdpX2J7VqA9p77GzqhnTChneV4+Ro5ciTuuOMOREREKI8HmyPag8nq7777rqqaNWHCBDz11FNKjNxyyy1mb8jYsWOVILnwwgtVgvucOXNUaWBBEOoHnUmzegRBaBJSipPwc9LXFbZfHXU73J08cOGCpxCfl4ybRsTAuYp/0EcGjUMXn54NPFoAq98A/n7CetuMn3AwqBtm/PYqsk92Uu9QkoX7MzdjVti5di/j5+aFRRc9ijCGmmUdB+ZOBDKP4k2/Xnjfv4fVsWGe/nDR6RGfn4Frc/bi7sztcIURqXp3rHcPxbiC49jsFoJlHhEYVZiAIcUpwE0rgVYVRZIgCGdWHxJBEJo/ErIlCE2Mj5MvXHVuKDGdCncKdAlGblk21mWuwKW92uDL7ZnYejwbA6OtS/VaklN2quRvgzL0NiArDtj2DeDsDoyYDXQ4Dx1pkFzyFK767WV4Ju/BgOIUvBrQz+pUJrP3CW0LLxd3XN3tXCVGtqUcwYdLX0GGW0dM9HHB7zY5KSS5oPzZWpfl43+ZW1HejQUIMRZhQkGc+n1wcQo8jWX4zyMckYYiRHqHNcJkCIKgQdHB0r6spsUEduaMMEyrMTwjgiCc3oiHRBCaiPjCWGzIXIG0khQVuuSkc0apqQSBLiHo5z8Ey1J/g1GliBMdEk74IdjDG31bh8OoK8a+POskzMmtrkSYW+vGewCGRLH8sE0J4ksWPY/d6eUiQaNvaFuUGowIdPfGyoRTPUlm9Txf9TrRkt1Ju5IsHLHpkaKHDkaYMDn3CF7IqNitXSNf54z+bS6Dpw74ZuLDKDGWwd3JxdzsURAEQRCE5od4SAShkTGajPg1eT4Si04Z7exgbjSV4KzAMejm2wf/pCyxECPlR5zbIQojg8eZr+Hu5In9uTtVEjwFTKOKEWJT8jK3pBD/suRuYEQFQbI15ajdS3y66y+r8r+E4ow5IkUWlcZYgthoNKBzacUyv5YU6Mp9JwUm4H+LnsJhlF9jZGQPvD16FlydTl1TEARBEITmgQgSQWhESowlWHzie6SVJNvdvyFzNYqMRThUsLfKBHB2Uh8ccLZ6NQfYzPDKX19FZnGeeu+qd1beieqwFSOkf0kaipyjkADAn6Fdfr5wOrgUyU4e8DyZ+G+Pte5huDVkpPm9c3EuOuh0OOQagBXxu7D48EZVYlgQBEEQhOaFCBJBaET+SF5QqRghxaZCbMxaVWG7Hk7o5tN8u45/vGOpWYwQTYwMLjyB9e5hFcK6NNz0zigzGc3CZGb2XvzpFY3kk5W5hmTtx02H/jOXA4x18lalhlndS+OuoOFIcfbAbtdAlOhP/Unb7xYIJwvBcyArsZ6fWhAEQRCE+kDK/gpCI5FXloOk4uO1Onds6CQEuzXfJO0T+Rl2tx9w9Ye3sbTS84qNZTg/7wjmJf2OjiVZGFmYiGRnT/P+Pa4BeCpwIDL1bup9tCEPH/t2xQFnP+URuSt4BP70jsZW91ArMWLZCwUn0+SGtupcD08qCIIgCEJ9I4JEEBqJ1OITtTrP3yUI0Z4d0JwZG9PX7nb2CelRkl7peb6GYryctha/e8bgoKs/ggzF8DecKhka5+KLed4dsMzjVH6Mu8mAmZETcG3YufjTq031g9Pp4KJ3whARJIIgCILQLBFBIgiNRHxRbK3O6+DZ/A3paZ3Pxux+k1TuiCXX5ezDndk74VmJlyRH74LbQs7Cj97t1PtvfDvhrqwdVsdcm7MPl+SfSoqfkXsAwcWZLBFofTGTCcFlhXbvU2o0ID6vcmEkCIIgCELTITkkgtAIsAv74bxTHc5rApPcmzs6nQ43974AM7qNwvz9qxGbdhT9NryDSQXH1P6/EhZhTkA//Obd1vZMLLfoOzLfp4PKO9GbjDAy3Irel5N9RjScYcL1RXHYWeyOb306mbefU5iAAfpS9Ew9iOvDz0XZyYpbJMTDF9G+oQ309IIgCIIg1AURJILQCCQUxqHYVDthEeVha8Q3X7xd3HFtj/PU70WmdLyy/Xf4GYuhgwmvpa9FsrMXNrtbCAM7ye7rPcJVv5KMojy4mAx2c1Bc3P2QXqpD9+J0tCvNxg05+7DUMwqH+l2HGwyJ+Gr377jXqysSdS5o7R2I50bMVGFbgiAIgiA0PyRkSxAaAWeLnhqO4qJzVWV923iWhzOdbriPehDXTPsA+b2uQGH7sWrb+ykrcHP2LowsSECARa6ILf/rOQYTTLm4N3MbOpTlWO37xyMC97m2Ufkju92CsNi7HTa6hWB5cC/c3u8iYPSj6HvHf/jn2o+xetqL+PvSZyR/RBDOEMrKyjB37lxcfPHF6Nu3L4YMGYLrrrsO69ZZN1QdPXo0OnfubH716NED55xzDp544glkZNgv0kGOHj2qrrtgwQI0NQ8++CCuuuoq8/vNmzdj06ZN6vf4+Hj1XOvXr0dzwXa89X28o7z99tvq868L7Cn+888/Iz09vdZjsPz+dbbz4mfY0M/O+zSH7zIRD4kgNAKt3CIR7haBE8XsrlE93b37YETwGJzuBId3xezwruVvsnfC98i/mH0yR+TDgL543ffkPgtc9M7I3/0LUovyMSm/POTLkjf8e8Fk0ZOFvBTQD+19IhHpE2QVRhbs4Vv/DyUIQuUYDUDsGiAvGfAOA6KHAY3knSwuLsa1116LpKQk3HnnnUo4FBUV4aefflLbX3rpJUycONF8PIUKX4THHThwAC+//DJmzJiBH374AT4+PlbXLy0txf/+9z8UFBSgOfDII4/AYDjVQHf69Ol4/vnnMWDAALRq1QqrV6+Gn59fk46xpbJx40YlmP75559anc/v3bRp08zvL730Ulx44YXm7yMJDAzEmYQIEkFoBGgcjw+bit25W7Euc6XqvF4ZeugxMOAstDhmLgTWfwTsXgAEtscNw25HXtx+zD+wGgWlxTDChBifUJwd2R1zdv8NeISrcr+BxmKryxTrKv7ZKtE7YX9WAmJzUiRXRBCaij2LgD8eAHIsev74tgbGvQh0m9Tgt3/zzTexf/9+LFmyRBnkloZ7Xl4enn32WbU67OXlpbZ7enoiJCTEfFxUVBS6du2K8ePH45NPPsHdd99dYXXZ29sbzQVbwWSJk5OT1bMJ9Qs9JHWB30Hte6h9Xp4238czDQnZEoRGDNvq7TcIE8MvR5hrKzijYhhXqGsrTG19Ldyc3NEiGTwLuO4PYPK7cArtinvdDVhnOIwd7lnYNXomllz8OPZnnvIiveXfSzVC1MjSu+HrpD8RUXaqCaOG0WTEvP2rG+1RBEGwESPzZlqLEZKTVL6d+xsQei/oCWGolqUY0Zg9ezY+/vhjuLtX/be1devWGDNmDH799dcKK+L0mrzwwgsOjYdhMGeffTbmzZuHESNGKG/NbbfdhuTkU41x6ZV54403cO6556Jnz5646KKL8Oeff5r30/tBj83IkSNVSNm4cePw3Xff2Q1pYugNeeihh9R2y5AtjoXXz8mxDn8977zz8Prrr6vfOS4KMHpXBg8ejJtvvhnHjlX0UFcFw8VmzpyJfv36qfFecMEF+OWXX+weq41v4cKFmDBhAnr16oXLLrtMhZ3Zfq4vvviiCr3r06cPbr31VqSlpdXqnra8++676ll5Lj1fWVlZ5n25ubl47LHH1H379++v7rFz5061j3PK94SfnRbyNH/+fOWB47NwrPRYaefUJ4sWLcKkSZPUfXh/hig6Mu7mjggSQWhkWrtHYXLrGbg+ZjbGhExCG492aO/ZBVNazcCU1jPg73qGuGl3LQB+vA44vAzYuwj4YgIQvwmXJK7CC2lrMC4/VuWJXNTqAiwLHQj4t4G/sRihphIsSPodD2dswiW5h6wuWcZwEUEQGhf+f0fPiF3P78ltfzxYflwDcfz4cWVQ0ri0R1hYmDLguBJdHZ06dVLXy8/PV+9pyN9///149NFH7YqdymAuCo1Fig7+ZCjZDTfcoPJcyD333KMMchqQNDIpEO666y78/fffav+3336LP/74Q4kGChWGkj355JPmPBFLGJ5FHn74YeURsoRCxtnZ2UrsbNmyRT0jBRxD0DRh8/XXX+Orr75CQECAEgiWAqoqeNz111+vhA9zK/hcnG+OxVJA2EKBR/HDc9q1a6dCljguja1bt6r551x8+OGH2LZtmwq9q8s9SUJCgsor+vzzz/HBBx8oo51iTvN+3HjjjWocvCdFJQXGFVdcgT179ihxSW+ZJkIYavXXX3/h6aefVp/v77//ji+++EKFEPI7U5/89ttveOCBB5R45XeG36FXXnlFiaLqxt3ckZAtQWhC2nl1Vq8zkq1fW783FAPfXY4L89OQpnfHBrcwBJcVINPJDT4Zx4DiVPOhfsZSzMw9oH5f5dEaKc6ecHVyxsUdhzb2UwiCwJwRW8+IFSYgJ6H8uLYNE46anZ2tftZHzoSvb3nuGcO8GFZDEUAj1DL/xBG01X2u3BN6O2i8rl27VnlimH9AY5jJ9OSOO+7Avn371DaKk7i4OBXGExkZidDQUCVIaLS3bVux8qIW6sMwLr60+SC8BkXJ4sWLMXXqVLWNv1O8RUdHK6OaRj/HR+FC5syZozwBNGo5ruqg8c3jKBAYokxmzZqlRAI9LcHBwXbP4zH0kJBnnnlGiQTe89577zU/F7fr9Xr17Jy/NWvW1OmexM3NTQk97ZjHH39ciaHY2FgkJiYq4cOx+Pv7q/00/CnivvzySyWitO8Z8zzodeNxnDN6LkhERITKC6FIqU/mzp2r5oDPTGJiYpRw5hg43urG3ZwRQSIIQtPgZicWOz9NradOaH0hsk6GrYWUFSDcYD+J1KB3xVnthsLo6onpXUeic+CpniaCIDQSTGCvz+NqgZYAbBl2U1sY9kKYL0Ljlh4JGvCVQbFiiRbuRTGjiRHSvn17ZcgyeV67B8NqLBk4cCBee+019fuVV16pvCUM2WJuy/Dhw1V+S1DQqeIdjkJPCMN36FXgXHEVXzP6uXpOAcN7W0KD//Dhww5dv02bNuoeNHz5fBRTFFfEMvHeFoZMabi4uKj54vmW16UY0eD8MdTNkXtSWHC+LKHHhVCIWQqW3r17q58HDx5UYobehlGjRlmdW1JSoubEHpw7zhXDwI4cOaKEDfOZjEYj6pMDBw5UeCZ6sgjznmo67uaECBJBEJqGYXcCB/4Eyk6W//UMAgrS8YN3B7MYIanOnnjNvw9eT/uvwiWcht2BOefe3JijFgTBFlbTqs/jagET0mlgcjWYK8i20FjkCjbDcjp27FjltXbv3q1WnikomJfC0q6aF0OD5YEZPkMjkKLFEnozNAPbFhrKVYWN0aDUvBQcw9KlS7Fhwwb8999/WL58ucqDYSWtKVOmoCYwN4Sr9kz4p6eBRj3zLQiNZnpd3n///Qrn0bviCIcOHVI5E927d8ewYcMwduxYFfaleWQqQ3tWy/mxFCBVzVV19+TnYPvZVHZdTTTxM+N8UIzaK4fr6upq93oUrMzdoReNnidW0KJ4qG8PibPNfFlSm3E3J0SQCILQNEQOAG7+D9j1I+DqDfScCnx5ERJKK/7h3OsaUPH8Vn2A8x5vnLEKglA5LO3LalpMYLebR6Ir38/jGggasQyRYf4Dw1lscz0oHJgnQKO8Kk6cOKFCqRiLTxifr63Ia9DwZVlhLTyHq+32oLeG8fwUS9rqO8PAunXrZvZyMInbckWb3pgOHTqo37nyz+O4Ik7vCPNYWL6YQqimgoQhTTyHAofjYUiYVjGMOTNMBGeol+ZpYrgZPSgM9bIn8Gz5/vvv1ViZk6GxbNmyaitS8TPREvK5kk8xqK341/WeNN4r+2zoBeFnoc0BPwfOEeee53If50D7LAjzQbp06aJC57QQMY2PPvpIff+eeuop8zatJDCvZ3t8bWnfvn2FJHUKVOYn0VtU3bibM5LULghC0xHcATjnQWDY7YBPGHDtb7igy7kVDutTYtGozCMQ6DcTmNE8mjkJwhkP+4ywtK/C1vA6+X7cCw3ej4TJ0fQqcNWcK+MM4dmxY4fyivA9cxEsV/yZzJ2amqpeFA4Mj2JSMnM2aPhryfA0ai1fhIYw91XHfffdh127dqnYfgoKhncxvIeGJYUIDVh6Pthw8Z133lFGrNaLgknxXGHnNiZhr1q1Cnv37q0QIqbBZ6MnKDMz0+5+ChIas7wejVcNCiuGQlFkbd++XV2Dq/0rV660EgucJ/60R3h4uBJzK1asUGOl8GHujXZuZTDhn89PbwcT8gsLCx0WJLW9J2EIEyuvMVyN3id+NyZPnqwE61lnnaVC5Fh1jPkYDL+i0U/PAz83on2PGCLGHA4KYHrnKKj4vWNSOwsEODKWmjBr1iwlSCm8eR96Zlh5jeWsHRl3c0Y8JIIgNB88A9Ft3BN4cPc/eGPLIhSVlaBncDQeuuw5IG0v4BcF+JevNgqC0Ixgn5HLvqykD8kLjdKHxMPDQxmBn332mQptYg4Bk33pkaABx7AlS3gcX1qoDo1KrTmdZY+IusAQHhqRNEppNLIClLZazlwRvriNSeX0VLB6E8sOk9tvv12tdrN/CsUAE7xZMemmm26yey+Om54gCgp71Z2YSD9o0CDlHWBZWA16RjhvrF5F7xLDlxgGxbnRDFnmXjAHhV4by7wPDe5j7gRFF5+VwpAJ1W+99ZYSQSyBbA8+DxP/+Vkxj4OfkxbyVh21vSdhrgqNd16Dnwc/d4owLZyLz84kf4oWiiTOAwXj0KHlhVP4WTG3h/t5T1ZKY2I8vRAMj6JHgvNJccCx2H73asvo0aOVSOX3m/NGAUXBTTFFqht3c0Znqmt3F0EQhAag1GhAcVkJvF09mnoogiCcBp3amxNclaahyMTmlgK9OTR8tQTwusA+JOyhUZnAEc48JGRLEIRmiYveScSIIJxuUHywtG/PS8t/noFipCXC8CCGi9HbJAgNgQgSQRAEQRAEoVJYYpfhVPYqhwlCfSAhW4IgCIIgCIIgNBniIREEQRAEQRAEockQQSIIgiAIgiAIQpMhgkQQBEEQBEEQhCZDBIkgCIIg1JHStEKUJOY19TAEQRBOS6QxoiAIgiA4QFl2MfTuTtC7nfqn02QwIuO7fSjcla7eO/m7wWd0G3j1DYXORdb8BEEQHEGqbAmCIAhCFRhySpDy6Q4YkgvVe72PC0Ju6gWXYE/kb05G5vwDFc5xDvNE6C29oXd3RllWMWA0wTnQvQlGLwiC0PwRQSIIgiAIVXDizc0oSyqw3qgDvIaEAzo98tck2j3Pb3xblMTlonBnmnrv3jkAgVd2hd5VmgUKgiBYIv5kQRAEQaiE/C3JFcUIMQH5a08gf31SpecW7EozixFStD8T6d/sbaihCgyrKyvD3LlzcfHFF6Nv374YMmQIrrvuOqxbt87quNGjR6Nz587mV48ePXDOOefgiSeeQEZGRoVrvvnmmxg1apS65pVXXolt27ahqXnwwQdx1VVXmd9v3rwZmzZtUr/Hx8er51q/fj2aC7bjre/jHeXtt99Wn39d4Fr+zz//jPT09FqPwfL719nOi59hQz8777NgwYJ6v09tkBwSQRAEQbDBWFCKzAUHVW5IWepelBxcChiK4RI9Ai5thp060FB5kEFpbG6FbcUUJfP2I+iyzmiJGIxGbEo+hNTCbIR4+GFAWAc46Rtn7bO4uBjXXnstkpKScOeddyrxUFRUhJ9++kltf+mllzBx4kTz8RQqfBEed+DAAbz88suYMWMGfvjhB/j4+Kh977//PubPn48XXngBUVFR+Pjjj3HDDTfgt99+Q2hoKJqKRx55BAaDwfx++vTpeP755zFgwAC0atUKq1evhp+fX5ONryWzceNGJZj++eefWp3P7920adPM7y+99FJceOGF5u8jCQwMxJmECBJBEARBsCHzl8NKjBiy41G45k3AZFTbDemHAL0zXCIHVXm+zsMJpsJTxqIlhVtSUDoyCi5hnmhJLD22Fc+tn4cTBVnmbeGe/nh48GUYG9O3we9PL8b+/fuxZMkSZZBbGu55eXl49tln1eqwl5eX2u7p6YmQkBDzcRQbXbt2xfjx4/HJJ5/g7rvvVtv//vtvTJgwASNGjFDvaYhSoNBLMnbsWDQVmmCyh5OTk9WzCfVLXbMd+B3Uvofa5+Vp830805CQLUEQBEGwoWhveShGWcJGsxjRKD1uHf5jj8rEiEb693vrbNQ0NzFy178fWYkRklyQpbZzf0NSWlqqPCEM1bIUIxqzZ89Wng1396oLC7Ru3RpjxozBr7/+at4WFBSEf//9V4XQ0CNB74mrqyu6dOlS6XUYBnP22Wdj3rx5SsjQW3PbbbchOTnZfAy9Mm+88QbOPfdc9OzZExdddBH+/PNP837eix6bkSNHqpCycePG4bvvvrMb0sTQG/LQQw+p7ZYhWxwLr5+Tk2M1xvPOOw+vv/66+p3jogCjd2Xw4MG4+eabcezYMdQEhovNnDkT/fr1U+O94IIL8Msvv9g9VhvfwoULldjr1asXLrvsMhV2Zvu5vvjiiyr0rk+fPrj11luRlpZWq3va8u6776pn5bn/+9//kJV16rubm5uLxx57TN23f//+6h47d+5U+zinfE/42WkhTxSp9MDxWThWeqy0c+qTRYsWYdKkSeo+vD9DFB0Zd3NHBIkgCIIg2KBVxNK5nFrF1LC3raYwL6X4SDZaSpgWPSP25JW27bkN89VxDcXx48eVQUnj0h5hYWHKgONKdHV06tRJXS8/P9/sYXFxcTELBxrxb731Ftq0aVPldZiLQmORooM/GUrGUC/mpJB77rlHGeQ0IGlkUiDcddddyiNDvv32W/zxxx/qfhQqDCV78sknzXkiljA8izz88MNqvJZQyDg7O1uJnS1btqhnpIArKCgwC5uvv/4aX331FQICApRAsBRQVcHjrr/+ejU/zK3gc3G+ORZLAWELw+AofnhOu3btVMgSx6WxdetWJaQ4Fx9++KHySjH0ri73JAkJCSqv6PPPP8cHH3ygjHaKOcKFghtvvFGNg/ekqKTAuOKKK7Bnzx4lLpmLoYkQhlr99ddfePrpp9Xn+/vvv+OLL75QIYSPPvoo6pPffvsNDzzwgBKv/M7wO/TKK68oUVTduJs7IkgEQRAEwQa/C9upPiIu0cOg8ww6tcPZDa4d6ydMx5BbjJYAc0ZsPSO2ouREfqY6rqHIzi4Xd/WRM+Hr66t+MsyLHDp0SIVHcUWd3hEa8VxR37u36gIF2uo+vQ40lOntYJ7K2rVrcfjwYZV/wCR6JtO3bdsWd9xxhxI9NJBJXFycCuOJjIxERESEEiQ0oHmsLVqoD8dpG8rFa1CULF682LyNv1O8RUdHK28QjX6Oj14fCrI5c+bA29tbGbWOQOOb4+e88JodOnTArFmz1BxU5WnhMfSQtG/fHs8884wSQpb35HNxO8UKvRk0/nft2lWnexI3Nzcl9Lp164ZBgwbh8ccfx7JlyxAbG6uECoUPhWTv3r3V2Gj407j/8ssvlXdM+54xz4NeN39/fzVnFAr8rHgs80L4edcnc+fOVXNAIRYTE6PCCyloOYbqxt3ckRwSQRAEQbDBvVMAwh8YqLwYgdd9j+Q5XwAlxXCOGAC9Z/0kmzoHeKAlwAT2+jyuNmgJwJZhN7WFYS+EBjm9Gvfee69a8aawIFyRp0jhKvl7772nVswt0cK9mCPAMCINGog0ZGmkavdgWI0lAwcOxGuvvaZ+ZzUveksYssXcluHDhysDlCFkNYUiiuE79CpwrriKz+ciXD2noOO9LaHBT+HkCPQW8R40fPl8FFP79u1T+ywT722hyNCgF4rzZWnE87p6i6IInD+Gujlyz8TERDVfltDjQihggoODzdtpwJODBw8qMUNvA6uqWVJSUqLmxB6cO84VReuRI0eUsGE+k7GevYIHDhyo8Ez0ZBHmPdV03M0JESSCIAiCYAcnb1d49ipfeQ6ceSXyVlRThtNND7cYP1VJq1qcdS0mqZ3VtOrzuNrAhHQamAxF4gqyLTQWuYLNsJyOHTtWea3du3er1WcKilWrVqkVd4oQS2jArly5Uv3OUCFLtMpbNLBtoaFcVdgYDUqGVxGOYenSpdiwYQP+++8/LF++XOXBsJLWlClTUBMoprhyz4R/ehto1DPfgtBopteF1cRsoXfFESjQmDPRvXt3DBs2TCX709sxderUKs/TntVyfiwFSFVzVd09+TnYfjaVXVcTTfzMOB8Uo/bK4dI7Yg96nJi7wxwSep5YQYvigWFc9YmzzXxZUptxNydEkAiCIAhCNfhf0Baukd7ImHcAKLVe9XQKdkfgtC5wiywPlclYeBAF606Y9+s8nKH3dIYhvcjcVNFvXFvVxb0lwNK+rKbFBHZ7eSQ65nB4BajjGgoasQyRYf4Dw1lsE9u5esw8ARrlVXHixAkVSsVYfBIeHq5+crWbYVcaNDYpGLTVdnvQW8N4foolbfWdYWAME9K8HEzitlzRZn4IQ48IV/55HFfE6R25//77Vfli5hHUVJDodDp1DgUOx8N8FRqvhCFaTARnqJfmaaIIoweFoV72BJ4t33//vRorQ8o0GAJFqirewM9ES8jnSj7FoLbiX9d70niv7LOhF4SfhTYH/Bw4R5x7nst9nAPtsyDMB2FIG0PneKwlH330kfr+PfXUU+ZtWklgXs/2+NrSvn37CknqFKj05NFbVN24mzMt46+hIAiCIDQwnj1DlIjInH8AhpwSOPm7IfDyznBra73yHzi5ozq2+FAWXFp7qd9JWXYxSo/nwqW1tzlpviXAPiMs7ctqWjS7LM1PzQx7eNDUBu9HwuRoejS4as7kcK5UUxSwMhVXypkzYLniz2Tu1NRU9Ts9BhQdjL9nzgYNf0IRwrAqJhIz34MChddiHohlxavKuO+++5RByER2GqsM72J4Dw1UChFu4+9aLgeNWI5BS4pnCBDzA2hQMhSIeStahSdb+Gz0BGVm2vfQUZDwehRT/KnBik00qNm7heOlkc5QNHqAOI+aWGBYF0Om7K22c14o5lasWKGMYQoLllnWzq0MPis9W5xz5s4UFhY6LEhqe0/CECZWXmOOBeeLeSqTJ09WgpXXZYgcq44xQZ7ilkn19Dx8+umn5rkmDBGjV4bH0DvHMVDYURixQIA2Fuas1AezZs1SeTP8XjKUb/v27ep7SE/MWWedVe24mzMiSARBEATBQdw7MrdkEAy5JXDydYVOb3/l0729v3pZ4uznpl4tEfYZeXPUrAp9SOgZoRhpjD4kHh4eygj87LPPVGgTcwhozNMjQc+JlgOiweP40kJ1aMBpzem0HhH0vDCUiYYzw71olNOjwJwSLe+gKhjCQyOSRil7oNBQ1FbLmSvCF7cxqZzXZV4Kyw6T22+/Xa1208imcGKCNysm3XTTTXbvxXHTE0RRYq+6E0saM4Gb3gGWhdWgAc15Y/UqepcYvsQwKM4NV+S13AsKIXptLPM+NLiPgoleHD4rvUc09lmNjCv6LIFsDz4PE//5WXE++Tk52myytvckzFWh8c5r8PPg586QKy2ci8/OJH+KFookzsM777yDoUOHqmP4WVEQaKKGieVMjKcXQisJzfmkOOBYbL97tWX06NFKfPD7zXmjgOL3kmKKVDfu5ozO1JIKoQuCIAiCcEZ2am9OcFWahiK9Li0FenNo+DoixKqDfUhYUawygSOceYiHRBAEQRCEeoHiY3CrTk09DKGeYQUrhouxz4kgNARn3rKFIAiCIAiC4DAssctwKnuVwwShPpCQLUEQBEEQBEEQmgzxkAiCIAiCIAiC0GSIIBEEQRAEQRAEockQQSIIgiAIgiAIQpMhgkQQBEEQBEEQhCZDBIkgCIIgCIIgCE2GCBJBEARBEARBEJoMaYwoCIIgCMJpzYMPPoiff/65ymMaoms675uQkKB6dEj3cUGoPSJIBEEQBEGoF0wGAwo2bUZZaiqcQ0LgOaA/dE5ODX7fRx55BPfee6/5/YgRI1RX8QsvvLDB7y0IQt0RQSIIgiAIQp3JWboUyc89j7ITJ8zbnMPDEfbwQ/AdO7ZB7+3j46NetttCQkIa9L6CINQPkkMiCIIgCEKdxUjCXbOtxAgpS05W27m/OWIymTB37lycf/756NWrF8aPH48lS5aY9ycnJ+Puu+/GgAEDVBjWzTffjGPHjjXpmAWhJSKCRBAEQRCEOoVp0TMCk8nOzvJt3M/jmhuffPIJXn/9ddxwww1KiEybNg33338/1q1bh4KCAlx11VXquK+//lrliQQEBOCyyy5TQkUQhPpDQrYEQRAEQag1KmfExjNihcmk9vM4r8GD0Ny8IzNnzsTUqVPVNgqQoqIilJWV4ddff0VOTg5efvllODuXm0tz5szB+vXrMW/ePNxxxx1N/ASC0HIQQSIIgiAIQq1hAnt9HtdYZGZmIjU1Fb1797bafuONN6qfTz31FLKzszFw4ECr/cXFxTh8+HCjjlUQWjoiSARBEARBqDWsplWfxzUWLi4uVe43Go1o27Yt3n///Qr7PD09G3BkgnDmITkkgiAIgiDUGpb2ZTUt6HT2D9Dp1H4e15xgFa7Q0FDs3LnTavudd96J559/Hp06dUJiYqI6Ljo6Wr1at26NV199FRs3bmyycQtCS0QEiSAIgiAItYZ9Rljat/yNjSg5+Z77G6MfSU2ZNWuWyiP55ZdfEBcXp5oa/vPPP6rB4aRJk+Dn56cEyvbt21WYFhshrly5Ep07d27qoQtCi0JCtgRBEARBqBOqz8ibb1TsQxIW1ih9SGrLjBkzVBL7m2++qfJJYmJiVNWtQYMGmatrvfTSS7j++uthMBjQvXt3fPbZZ2jfvn1TD10QWhQ6E8tMCIIgCIIgnKad2gVBOL0RQSIIgiAIgiAIQpMhOSSCIAiCIAiCIDQZIkgEQRAEQRAEQWgyRJAIgiAIgiAIgtBkiCARBEEQBEEQBKHJEEEiCIIgCIIgCEKTIYJEEARBEARBEIQmQxojCoLQoikuLMHhbSdQkF0Er0B3tOvZCmUlBqQn5sDF3RmhkX5wcpE+CYIgCILQVEgfEkEQWgRxe1OQcCgdJqMJeicdfAI9EN42EAc2JahtleHp64ZeZ7eF3kmP/JwiFOYUwyfIEyWFpTi6KxkFOUXwD/FGu97hcHV3adRnEgRBEIQzAREkgiCc9mQm52LvuuO1Pr/TgAjkZxcj4WCaeZuTsx6GMqP5vX+IF7oNi67zWAVBEARBsEZySARBOO1JOppZp/OLC0qtxAixFCMkKzUfxio8LYIgNC2dO3fGggULmnQMV111FR588MEGu/7o0aPx9ttvq9/5rHzmurBixQp1zZ49e+LLL79Ec6GgoADffPNNjc45ePAgli9fjqZk/fr16jOJj49X7zMzMzF//vx6/X5cZXEN2/udzoggEQThtCXhUBo2/3UQ2Wn5tb4Gw7tMuuqPc/Vwgc6B4wThTMZkMCFlmwlx/xjVT74Xmi9vvPEG2rZti99//x0XX3wxmgufffYZPv300xqdc9NNN2Hnzp1oSvr27YvVq1ejVatW6v1LL72ERYsWNdr9TmckqV0QhNOGkuIyJB3OUInqzPlIic2q0/V0eh38Q70Rtzul2mONBgO2Ljuk8kiYUxIS5Qc3D8kpEQSN+JUmbHvHiMJUbYsJHiFAn9v1iDxb1HxzJDs7G6NGjUJkZCSaE6drNoGrqytCQkIa7Tlcbe53OiMeEkEQTgsYLrVr1TEVWpUWn1OlGGGiurtX9WKBye4ZSbkO3b+sxIiivFLkpBWoBPotfx+qk2dGEFqaGFn7hKUYKYfvuZ37G4MjR45g2rRp6NGjBy644AK18q9hNBrx4Ycf4vzzz1f7+/XrhxtuuAFxcXFWIUz0FPTu3RtDhw5VoTE02jX+/vtvTJ06FX369FFhTjx21apVDo8vPz8fzzzzDEaMGKFWt2fMmIFdu3aZ92/ZsgVXXnklevXqhXPOOQdPPfUU8vLyaj0fCxcuxKRJk9T1GJr13nvvwWAwqH0M9UlISMC7775baegXn/+ee+7B008/reaLc/LCCy+gpKRE7WeoEM/lvA4fPhznnnuuGm9WVpYa+8iRI9W9+ZkwvEijsLAQjzzyiDqH8zh58mQsXbpU7WNI2jvvvKPGpoUj8X4vvviiegZ+doMGDcJdd92FjIwMdQ6383iex5Amkpubi8ceewxDhgxB//79MXPmzGo9KIcPH8aNN96oPht+Rvfeey9SU099qXntOXPmqDnhd+Tss8/GRx99ZBYeliFUnLuff/4ZGzZssJpffgceeughDBgwQI2LxxUUFDg8BktsQ7YsQ/oqC/MbM2YMvv/+e/X94jPceeedSE5Oxv/+9z91Tz7Tjz/+iMZGBIkgCKcFWcl5KMov/0fQkZyQkqKyBh0Pxczxffb/kRCEMwmGZdEzUhXc3xjhW3PnzlXG7eLFi5XwuPvuu80GP3MkGAZEA/DPP/9UhvixY8eUgU1o3N5+++245JJL8NtvvynjduPGjSrshvA6d9xxB8aPH6+uP2/ePAQGBuL+++83G+jVMXv2bKxcuRLPP/+8EgtRUVG47rrrlOjZt28frr32Wpx11lkqzOeVV17B7t271f7arLR/8cUXyiC//PLL1fVowPP5tedlqE94eLi6Pn+vDAqFlJQUZcQ+++yzatw0yi2h4c25ZwiYh4eHuuamTZvw8ssvKyO4U6dOuP7667Fjxw51/Jtvvon9+/crY55zTSOYnxUNa57LF8emhSPxM+A4OHZ+dvy5bt06vP/+++p6NKC1Z6HxzfmiUX/8+HEllvhZUUReccUV2LNnj93npFE+ffp0REdHq+t98MEHSlxx/iwFw3fffQcfHx/1XBwzv0cff/xxhetRcFEUa2FVlvMZGhqqzudz8fk/Pnm+o2OoC4mJifjjjz/U3L/11lv4559/MHHiRHTv3h0//fST+iyefPJJlf/SmEjIliAIpwc1iPiwTUhvKBpa9AjC6UDqznJPSFVwP48L7dOwY6Exx9V4zfin0UrDnMZ9mzZt1Co7Q5RIREQExo0bp4wzzRiksGjdurXaxxcNQs2j4OTkpAx83kODq+40fNPT06uN46f3hmKEooAr34SGn6+vrzL+uJ0eg5tvvlnti4mJwauvvorzzjtPrbIPHjzY4XmgQU4jlx4Yely069FzQZHAVXGG+vCZPD09qwz74fh4DoUGhQXFCQXJfffdZzXvHTp0MHuZKKQo2ng8obeE3gk+I8UIvVJeXl5KkPH6FEsDBw6En5+f2s4xcWzauOhF4WdFr4L22Q0bNgwHDhxQ7ykMtWfx9/fH2rVrsW3bNvX58z2hV4MeKApTTZRZQqFBUfPoo4+at1Fg0cPC74iWY8OcG35uOp0O7du3Vx4NXpPfA0soWtzd3eHi4mI1v/QYUcgQfif5me86KZodHUNdKCsrU99jjp2fT5cuXdQYKYYJfzIRn2I9ICAAjYUIEkEQTguY6+Hm6aK8H7XFw8cVJYVl9SZYgiN86+U6gnA6U5RuqsFxDZtLwhAYSxiSQqNUC13Zvn27MoiPHj2qXocOHUJYWJja37VrV0yYMEEJAhqQNBQZ1sIQF20/DWauLFNcxMbGKq8G0URLVWjGM1fqNdzc3FT4DuHKPa/JFXVbaPTWRJDQ25OWllZhPhjqVFpaqsbPuXEEGtAUIxocH6/B+dMMVq7oWz4njXFNjBAa7xQTmqeAxjvnmSFgvD7nmqv0PM8eF110EdasWaOEJQ1ljp/31wSKLRREFGWa+NSg4CwuLrZ7Dueflbps55/Hc/41+DnweSzng+LPUY8ChaEl/E4lJCTUaAx1hUJIgyLOUkzzO0kc9frVFyJIBEE4LdDrdYjpFob9m2pf3rAwt/7+wLI6V2TnlpFMKAh1wT2IxpnJweMaFr3eOhKdQoGJv4RCguE1U6ZMUYbwNddco8JVfv31V/Px9EjcdtttypNBA5heABr1DEeil4JhRxQp3EYDmrkQPN4RnJ2rNrmY48Jrah4SS+gBqAmVhXjxHo6MxRKuntu7Bj0SGvQEVHdvbtfuS4ObnpT//vtPeTMYBsbwq08++UR9NrY8/vjjKlSL4XgUlpxzelvo1arsOb29ve2Wgda+D/bOoSfiiSeeqLDPUijZzp29+aiKqo4zOjiGmnpEqvtMbf+/aQqafgSCIAgO4ulXvnLTEOj0gLObY/+gkNDoACWSBOFMJ6QnVDWtquB+HtfQcGXcEobodOzYUf3O8Csasgy3YUw+PRVcbdcMaHpPnnvuObRr106JFQoYvqeHhSFZLEXL1XHmKHA/V/WTkpLUuY7keDBEhlgmVtNYpIHNcByOkx4behu0F/cz30S7j6MEBwer1+bNm622M6+DxqjlCrkjc2rpAdq6davymDB0yR5MsmZCueYR0uaHY9HCupi7wPdMgmd4EsUGw7f4k1h6IOh5+OGHH5SRTm8Sw5boraKXpLJ5p3eGuRf05FjOJz0ZFKH24PzTC0FvgXY8vRf8Dlg+i21iPL9jrFLGY22xfA5H6OjgGCqDn61lEQT+zu/u6YAIEkEQThs8vB2rnmWP6v5dMBmBsuLqwy60Lu4x3UJrNQ5BaGnonHSqtG9VcD+Pa2iYL8IEaxqrmhGnxfbTyOOKPI1+7n/99ddVgrEWmsIV9W+//VblSzB0iucy4ZghNgxN4vlMxKZRz+RrJgAz/MvR8BYa8GPHjlX5FBQ5DDliLD/DcRhKxYRshuxwP41SGv6ssETRZBvm4wj05nz99dfqmfg8zOlgoj7FWE1W2xlOpI2J80UxwdwUyzAuS5gfQ8HAsdOrxPNYpYvzefXVV6tjmGxOgUHvCK9PIcJkay1UiWFETPTnHPFz4XgpJPgc/Aw4bxRKlvPO3BPOFUPVWBiAY2CuBuea51HY0WOiCUNbmAdDIcVqUwzF44vnU4BYhp/x8+cc8F5MPGcDR1Zrswefgzk3fF5HmO7gGCqDIpvfWYokfs8ffvhhhz03TY0IkhZCSk4Rvl4Xi992JqGkzKheSdmF5tUD/vx3Xwo+XHEY322Iw1WfrseEt1fhk1WVrzAIQnOkVbvqQxciOgXBpQbejpriH+at+qAIglAO+4wMfUpfwVPC99zeWH1Ibr31Vnz11Veq1C2NYXo5tJV8VjQqKipSVbRoUNNApqHNFWQawzRU6f2gAcvQIFZkojHHVXWGtDARnAYfQ6q4n4m/FD0MV3K0IR+PZ/I2k7i50k/PB0OPGJLFazNkae/evSqs7JZbblFjp8iqLMyoKihwHnjgARVuxspgFE8UZzRSawLHxee/9NJLVZUtJvIzQbwyOGf0JnXr1s1ctYx5EXwOLX+GYoShWQyJYzU0jo1GOHNFCIUb83j4OVKkcT8/L4a00fhnqBzHQKObv2sledmpnc+tjYElglncgNdhxTQKMnshYYQeGgo4luXlZ8/vCD0OTFi3DJmjV4cii9ek141eGx5vD35POD7mJlUWXlabMVQG54TzzsR0evE43yzXfDqgM4k1etqzNS4TV36yHgUl5au7/LPv4qRHicEIH3dnxAR54Vh6PnIrqQj02PiuYATk7oRsjOgQjI9XHcGx9AKE+7njzWl90Ceq8ioL6XnF2BKXhbziUni5OmNUl1B1b0Gob/Kzi1RjRBhN2Lu+6tUmNy8XFOdXTH4PbxeAguxieHi7wsnFCUmH01HTv4Au7s7oMTxaeWsEQbCGpX1ZTYsJ7MwZYZhWY3hGhIaBJZLpwaDIE8pFDyt82avSJdQNSWpvAbzx90GzGCG0ryhGCEXIzoRTTZ3s8exve81G2cJtiebtsekFmPLuGgxrH4RLB0RiSt9TnVwLSsow89P12GTTnI4h9d1a+eLygVGYMSS6xvGTgmAL10wObklEWnz595ieD99AD+RklK+K2cOeGCHRXRlmpUPK8SyUFJaiy+AoHNyciLJSx0K1iJevm4gRQagEio/y0r7yt18QBMcRQdICjLWNxzLqeI0q9gH473C6epUaTLhsQBSyC0tx7qvLkZZXMWbWaAJ2JeZg1y+7UWIw4foR9pPeBMFRslPzzWKElBYb4OWnR7ehbVBcWAp3Txfs2xBfbSlfnV6nBPLOVceUt4UkHEyHk4ve6hiWFi6y8902jyetfppTCYIgCIJQjgiS05x1RzKsvCMNybyNcUqQPL14t10xYsuPm+NFkAh1ptDOd40d29mXRKPP6PZIOpKBxEPpVXZWP7Q9ySxGNAylRqtjvHzcqhQk4vQTBOFMQUKTrJHQtYZDBMlpTj5j6huJzXFZ6PP0UmQ72JjO112+XkLd8Q/1srPtlBghbh4uiOkehoKcImSl5Fd6reyUU+UQK8PJ1anKBoyu7s5KuNCbIgiCIAhC3ZHs49OcER2DUZd8QW83Z3i6Ojkc2pVVUOpA+ysm1etw26jyeuOCUBeYr9Gxf4QSHRQBIZF+iO5W3lnZls4DoxDVJQSB4T5KONgN26rmr15AmA+iOofA1c2+oC7KL8XutbFSnU4QBEEQ6gmpstUCOOflf1VVrNowqnMInJ30+GuPdTm6jqHeyCsuQ5CXK1LzipGcU+zwNa8c3AbXDo9Bh9DadRUVhPpg95pjyE61/v8iONIXzi5OOHE00+45nr5ucHLSIzez8oR5ja5DopR4EQRBEAShbkhMTQtg9nmdcPe8bTUuX0rO6hiMc7uG4XBKHo6k5cNZr8ONZ7fDA+O6mI95aMFO1bvEUTbHZmLt4XSc1y0M94zpBHeX06Mpj3D6waT2kqIyePu7V6joFhYdYCVIuDuqU4gq25uelItSO2WwS4vLUOBgc0TeVxAEQRCEuiOCpAUwuW8E2gR54o5vtyIhq/qVXQ13Fz283FxQZjThyUnd8NY/h1Slxu6tfbH9eCbeXnYI8ZmFGBATiOggT1UG2BH2nchVPz9aeQRFpQY8fVGPWj+bIFTG0V0nkHS4vMIccz66DWkDD59T5XiDI/zUz5S4LNVZvXX7IPN+eknsCxLHC0SId0QQBEEQ6gcJ2WpBPLloN75Yc6xW53L1uKpvwsV9W2PZ/lSVQ1ITAr1cseWxMbUakyBosKQvv6Nad/TcjAJVvteSgHBvdB3cxqHrHdycgFSLUsK1YdhF3ep0viAIgiAI5YiHpAVx66j2KlRqf3K5h6ImVCdL2TCRPUZqSqjFirUg1BSjwYjD25NUHxImpLdqF4TobqHIt5PTlJ/teJ5TG3WNIhScvE542wCkHs+utpeJhruXaw2eQhAEQRCEqpAqWy2IUB93/H7XWfjplmEI861cCHg41/xjr40YYT7KvWM71/xEoUVCZ6wjDlnmccTtTcGBTfGqQzuFAk8zGkxIOJiG9KQc+AZ5VjjPz862ymAFLVbicvNwhneAO4Ja+yK8baBD57JTfOeBkQ7fSxCE05vOnTtjwYIFDh+fmJiIX3/91fx+9OjRePvtt+s0BstrcCwck6PwPJ7fUDz44IO46qqr1O/x8fFqbOvXr2+w+wktExEkLQy9Xof+0QG4pJ99g8nH3RlL7xmJzjbx7xQP9UlUgAeW3XsOxlRSnlU4czCyIeG2RKxfsg8bf9+P+INplR7L/h47Vh5B/IE0pCXkID0xp8IxOWkF8PRxQ7vereB8smS1X4gXYno4/l2L25+q7lFcWIa8zCLsXRenQr6qI6JDEAac3wlefu4O30sQziSMRgOO796Bvf+tUD/5/kzjgQcewKpVqxrs+hdeeCFWr17dYNcXhKZAQrZaKKxu5eqsxy9bE5FXUgZ3Zz0GtwvEU5O6q0T2j2b2x1OL92BHfBb6RAVg9nkdseFoBrIKSvDuv4dhqGNqETu6M9FeOLOhoKAY0bqhU5zE7UlRpXWZiE5hkZdZiJT4bDg761GYV4zigqqrV3n6louB8JgAhLXxV2FdTjWo5FZaYkCijSii96UguwiBrXyQkWQ/5JHjjegYXKGalyAI5RxcvwbLvvgIeRmn/v/yDgzG6GtmoePgYU06tpaEu7u7eglCS0IESQuFvUVYDpgve0QHeeGzawZabetxsirR4HZBmPHpequ8EnZdz7GpStTKzx0lZQak55fCz8NZVesqLTNhSt8IzBrZriEeSziNYFncA5sTlNfDlqM7T9TqmhQMIVHl31PCvBInfc3KSicfy7CbM+Xi5oxOAyKREpup+pB4+3vAL8QT6Ym5SiyFRPmbPTKCIFQUI4tee67CdooTbp90z8MNLkpyc3Px0ksv4a+//kJpaSm6d++O++67Dz179jSHLm3evBnDhg3D119/jczMTPTu3RtPPfUU2rdvr445ceKEer9u3Tr4+Pio821Zvnw53nvvPRw8eBBeXl4YP3487r77biUSGLq0YcMGdRx/Llu2TP2empqK22+/XXk23NzcMHnyZNx///1wcir/m7Jlyxa8+uqr2LlzJwIDAzFq1Cjce++98Pau6LllyNZDDz2E/fv3q/cHDhxQ5/IahYWFCAsLw5VXXonrrrvOoXljKO2XX36Jb7/9FklJSYiKisItt9yCCRMmqP3Jycl44YUXlNeH4+3bt68K04qJianlJyUIFRFBIlRgeIdgvH1FXzy6cJeqqtUm0BPvXdkPRpMJry7dj71JuegV6YfHJnRDa38PJOcUobWfhzqXx1AMCUJOer5dMVJT6JnoMigKeied6tpeV4rtVIqj0AgI91Ehj8wlCW97ap9nZ1mJFISqYFgWPSNV8e/cj9B+4GDoa7iA4Cg0qm+88UYlCj788ENlyP/yyy+44oorMG/ePHTrVl4Vb9OmTUoQfPTRR0q0UBRQgNAgLysrww033KDOpWApKSlR+yyh2Lnzzjtxxx134MUXX8SRI0fw5JNP4vjx40qkUPTcfPPNCA8Px+OPP24+78cff1ShXHwxv+KRRx5Bx44dcemll2Lfvn249tprlQiYM2cO0tLSlLCioPjhhx+q9MpSgPC44cOH4/vvv1eCYf78+WpsQ4cORdeuXaudu08++QTvvvuuGtPgwYOxYsUKNS/BwcHo1auXElkUd5wTvV6Pzz//HJdddhkWL16sxI8g1AciSAS7TOjVGud1DUNKTjEiAzyUoUbmXje4wrGRAadCs/RsZCIIJ/NB6oPITsH1mrNBL0tybJbVtpjuYebvuCAINSNh726rMC175KanqeOiuvdqkDHQo7Ft2zb109/fX2275557lNeAYoMr/ISig8a+n1+5p3XatGl4+eWX1e9r165VXg+KjjZtykuIP//888qboUEhM2bMGNx6663qfdu2bZUYuu2223Do0CF06NABLi4uShjR06ExduxYXH311ep3eiA4pl27dilB8umnnypBQSFD6Hmgx+O8885TXhaKhKoEycyZM5VHhN4aQsFEkUEPSnWChGOfO3euusbUqVPVNgqQoqIiNVdMzs/JyVFz5OxcbjJSNFFUUehRmAlCfSCCRKgUdliXPBChNhTmFuPwtqR6uZa9ilp1gQ0NmRCfeChd/WPMkr+hbcoNGEEQak5eVma9Hlcbdu/erf5/ZqiTJfRyFBefKgnOVX9NjBCGZdFTooU+cZ8mRggNest8DR7DEC1LBg0aZN5HQWIP2/Am3kcb1549exAbG6tCoWw5fPhwlYKEomf69OlYsmSJuk5cXJzyuBCjsfoy5gxbYzgZQ9csobeJ0EOUnZ2NgQOtQ7w5do5NEOoLESSCINQ7bDrIBPZ6oQFatzIhni9BEOqOt39AvR5XG2h8M9TKXnleV1dXu7/bwtAoe0a85hkg9kqXa+dYHmeLlitiiXYtnj9x4kSzh8QSSy+LPSgmLr/8cnUcS/uOGDFC5cyMHDkSjkBvTlVwbPQCvf/++xX2eXrKgqVQf0iwvyAI9Y5TLXrd2MMv2Ase0lxTEJo1EV27q2paVeETFKyOayg6deqEvLw85e2Ijo42vz7++GP8888/Dl2D3hAmxjNsS+PYsWPquhrsscEwMEuYl0K0xPiawlwShntZjpvhUgwXY5J5VdAzkpWVhe+++06FkTGcjB4N4kjfJ3qIQkNDVTK9JQz74v05r+yrwuO0sbVu3VqFlG3cuLFWzysI9hBBIghCvRPSxh+u7qdWC2tTKbdVu0B0GRxVL+NhB/YTxzJxbHcystPy6+WagiCUw0R1lvatilFXz2qwhHZy1llnKUHBalfMI2EIFA1qekwcFQoMjWLoEhO6mY9CI52/M5Fbg0nvS5cuVQnsR48exb///otnnnlGhYpp92EuR0JCgqrY5QhMSme4FcOjGAa1detWVWGLYqi6SlZMnmceyR9//KGEA6t4MXdGC1dzhFmzZqk8EhYBYMgX81so4s4991xMmjRJhZdRoGzfvl2NjxW2Vq5cWaPmjIJQHRKyJQhCvcNO6L3OaYfUuCwYDEaERPghP6cIBzYlOJw30rZneL2MhauEe9bGIjejUL1n7ghzSCRkSxDqD5b0ZWlf2z4k9IxQjDR0yV+GRH322Wcq+Xr27NnKSKdAeOedd1S1KUeg8GCFrmeffVaJBOaO3HTTTUpcaJx//vl47bXXVAgTRQlDpVgelwa7BhPlWU2LxjwT5aujT58+Kgn9zTffxJQpU1QoFMfMa1QVYkbGjRun8meYtE9PTkREhEpOp6CgoGKVseqYMWOGSmLn/RkCRhH0+uuvm3NjWF2LhQCuv/56GAwGVXGLc11bj5Ag2ENncsSnJwiCUA8c35+K4/tSqz0uomMQorvVTznJ7NR87F4Ta7XNzcMF/cd2rJfrC4JgXQJYVd3KylQ5IwzTakjPiCAILQPxkAiC0GjY6wHCcC42JWQjReIX4qU6otcX9NA4sk0QhLpD8dFQpX0FQWi5iCARBKHRCAz3QUqcdQ8Q+mg79o+Ap4+bqsxF70V94h/iBVcPF5QUnhJDYdFS5lcQBEEQmgsiSARBaDTYlFDvpIfRxkNRUlimKmo1BLxfjxHRSDiYjqL8EgSEeauEeUEQBEEQmgciSARBaNTu7X7BnshMzrMSDP5hDSNGNNw9XdG+d6sGvYcgCIIgCLVDBIkgCI0Cc0R2/3cMhXkl5iZk3gHuKnndxVX+FAmCIAjCmYr0IREEoVFIPJRmFiOEBf6CWvuqEr+CIAiCIJy5yLKkIAgNDnNGkm2S2YmlQKkJqem7cDxpJZz0roiJPA9+vlU3DxMEQRAEofkigkQQhAYnLTEHhtKKpXaZYF5TUtN3YuP2N+hjUe+TUjZixMAn4e0lOSKCIAiCcDoiIVuCIDQoBYUpiIvbUGG7q7uzKgNMikuyYTBW7FFij7jEFWYxQozGUiScWFOPIxYEQRAEoTERD4kgCA1CTm4c9h76AemZewGjKzydJsLFEAMddGp/YJQBazc/j8zsQ0pgODt5oGvHyxHV+uwqr6vXuzi0TRAEoS4UFBTg559/xpVXXqneP/jgg0hISMBXX32F5sTmzZtVTt6AAQOaeiiCUGvEQyIIQr1TVlaE9dteKRcjRF+CAs+fkOv5BQz6NER2CkZ8zjfIzD5o9naUGQqxc99cFBamVXnttpHnQaez/tNVVJTRcA8jCEKNSnsXHc5CwbYU9ZPvT1c+++wzfPrpp2juTJ8+HXFxcU09DEGoE+IhEQSh3knL3IPS0lO9RjSMTunI9/kGQdHPYNe6RDtnmpCZcxgeHsF2r1tUnAl3t4CTaymnclLiT6xGp/ZT4ObqV6/PIQiC4xTuSkPW4sMwZJ8qVuHk5wr/ie3h0cP+/9PNGXodBEFoHMRDIginsRfCaCyzu89gKMGx+H+wa/+XSErZ1Ohjq0oYuLr4wM3VB05Obnb3+/pEV9hWUpqH9VtewrL/7sWyNf+DyWT93CaTUR0jCELTiZH0r/daiRHC99zO/Q1Nbm4uHnvsMQwZMgT9+/fHzJkzsXPnTrXv7bffxowZM3D33XejX79+eOKJJzB06FC88847Vtf4/vvvMWLECLz++utqH0O0OnfujPj4eLW/tLQUL774orpHnz59cOuttyItrfzZeAyP/fDDDzF8+HCce+65yMvLQ1ZWFp566imMHDkSvXr1wrRp07B+/Xqr+65atQqXX345evfujbPPPlvd32AwYO7cuejbty8KCwvNxxqNRnXMN998o+5HHnroIRVSRpKTk9VzMoRr8ODBuPnmm3Hs2LEGnn1BqBsiSAThNMrJyMtPUkJky853sXTlbfh71Z3Yf/gnxCWswInULWaBsmnHW9hz4BvEJSzH1l3v4cCRBVbXKi3Nx7bdH+GvlXdgzaZnkZF1oF7HGuDXHqHBfezu69huMpydPdC53SVsj2jezjAsbvP2DK9wzqGji5Ceta/S+/l4R8LHK6KeRi8IQk1gWBY9I1WRtfhIg4Zv0Ztx44034vjx40oQzJs3TwmGK664Anv27FHHbNy4EcHBwfjll19w7bXXYtKkSVi0aJHVdRYuXKi2z5o1C9dddx3Cw8OxevVqtGpVXsVv69atyMnJwbfffqvus23bNrz00ktW12DeCYXEG2+8AQ8PD3WdTZs24eWXX8aCBQvQqVMnXH/99dixY4f5mrwfRRT3P/vss0oYvffee5g4caISQUuXLjVff82aNcjMzMSECRPU2MjDDz+MRx55ROW9XHXVVWrb119/rfJdAgICcNlllymhIgjNFQnZEoRmDlf+N257Hdm5R9V7T49QVbmKlBmKcDj2V4uj9XBx8UZpaY7VNY4e/wsd206G0WhQ78s9JxvV71k5R7Bp+5sYNfwVuDh71MuYT6RuRn5BsvKCODt5qvAtvZML2kaNRVSrEeqYmKjzEBLUS93fxdkT/n7t4Opivwwww7gqg/MxoNfsehm3IAg1p/hodgXPiC2G7GJ1nHt7/wYZw7p165Q44E9///J73HPPPdiyZQu+/PJLRESUL1jceeed8PEpr+53ySWX4IsvvlCCgF6Io0ePqt8pCLy8vODp6QknJyeEhISY78Pfn3nmGej1erRr1w4XXnihEgi2OR0dOnRQv69YsQK7d+/G4sWLlRAh9JbQc8P8lDfffFOJBnpG7r//frW/ffv2ePrpp5Geno7AwECMHj1aCaeLLrrILHi4zc/vlCeaz8TX/PnzlWCi+HF2Ljfx5syZozwyFGl33HFHg8y/INQVESSC0IwxGEpVorcmRogmRuxjrCBG1FajAbv3f61yLbiSyBAnS5hQnpG5D2Ehfes8ZgqRrbs+gMlULn4MhmK0jTpfVdCyxcszVL0qgzkjRcVZ8POJQXbOqTmwhELLwz3Q7j5W8Np3aL6as9Cg3moM9M4IglB/GHNL6vW42kCjn3/bRo0aZbW9pKQExcXFSpAEBQWZxQihQOjZs6fyilCQ8CdDqjQxYY82bdooMaJBUVBUVGR1THT0qbDTAwcOqHtqYoTodDoVTqV5N3gMQ7wsOf/8882/UzjdcsstSElJUSLp77//xltvvWV3fPQGZWdnY+DAgVbbOQeHD1ftxRKEpkQEiSA0U1htau2WF1FUnF7nazHnIi5xeZXH6J1csWv/V8gvOIHgwO7Km6HX1/xPRGrGLrMY0UhJ32YWJOyyvv/IT0pstAodiC7tp8LJybXCdfYdmoejx5cq8eTiXHkDRV/vNna3l5YVYMPW12AwlhsL7OzOXid9ut940lNkqvB88Un/qcaLvt5RaBM5SnluhKbHWGpC+l7A1duEwjQd2APTJ+pUuJ/QtOh9XOv1uNrAvApvb28V8mSLq6srfvzxR7i7u1fYR2Of+RoMd6IX44YbbqjyPvSYVIflfSpLjOd2zYOh/awM5rQw1GzJkiXK++Pr66u2VTYPbdu2xfvvv19hH8WMIDRXRJAIQjMkvyAFW3a+Uy9ixBEiW52tPCgFheUxxizXS8HQvVN5/f2a4OkeUum2wqIMbN7xFownk9Jj4/9RuSOd2k6GTuekhMyeg98hMXkDjMZTq6mlZZUnrG/Y9ioG9pmtRIQl6Zn7zGJEIzF5Hbw8w3Ak7g/VUDEooCs8PULg5uKDxJSNyC9IUsclpWxAYsoGjBj4RIUSw0LjknXIhFUPGlFk/l+h3MBrNxEozgJOrAcY6Rc1Cuh+jR56V65Alx9ZkAIwJUnvJOKlIXFr66eqaVUVtuXk56aOayjogWACOfMtLD0cjz76KLp06VLpeczDeOGFF/D555+r5HS+t/Rk1BUmnTPZnl4QzUtCMcLeIdo4GaKlJd9rMAeFAoQhWBRBkydPxl9//aXECEO3KhNGvAdzZOiVYbgX4Zzce++9GDdunAoxE4TmiPxLKwjNDAqB1RufQG5+eVWXhiY0qA9ahw02ixGN+MRVtbpeSFAPq4R2Cg0PjxCUlRUiNX2HWYxoxMX/qxL0/1p1J9ZsmoP4pNVWYqQ6iksysXbTc2reNJj8f/DoYjtHm3Dw6EIYDEVK/KRl7EJcwr84eGyRWYxo5OYdx+HY37Dv8I+qUpltmJtQ/5TkmbDxRSMWX2LAv3cZkLHXhO3vW4qRUxxZDCSsAgwlANvQHPwJWHK5EQvHG/HzeCMWTjTi9xlG/DrNiNTtFVepmWCd+J8Je781IPZvI/ISTMg+YsLhX4xI3yPlXmuCTq9TpX2rwn9iO3VcQ3HWWWeha9euqroU80hiY2Px/PPPK48JDf7KoOE+ZswYlUDOqlg0+C09Cgx/Ym4JjfraQE8Gx0VBsGHDBhU2xfwQCpSrr75aHUOvDPNfmE/CaljMO+F4zjnnHPN1Lr74Ymzfvl3lq0yZMsXqHhwnr8tEdybkM4yMuTI8nttZfWvlypXmilyC0BwRD4kgNDN27P1M5V3UhI4xF8FgLFFVtZjorq0iO0J05Cg4O1cswevkVDG8wZEwM53eCX2734R/1z6MkpJMZfjT6E88sRYxUWMqnKMJFIqQvAJ7vUnK8XAPhY93G6SkVSxjbDAW40TKJnV9VhrbsO0VK4FSWyyrk0W2GoFeXa+r8zWFytn8ihHxK8p/p8hY+YDRshBbtZQVVNxWlAZseN6IYU/rkLoN8I3RIWwgsO5pE+JXaP+fmGz+nzGhy3Qdet4oa3aOwj4jQTO62ulD4qbESEP3IaHHgI0Mmcw9e/ZsVSaXQoSle1nel1WuKoPGPsO1+NOSsWPHqkRwGvmsWFWXcbFU8O23365yWnr06KGS6VkFjFCwvPvuuyov5OOPP0ZoaKgqWcy8EY2YmBiV+M6QLFuBxSpen3zyiRIfH3zwgRorK3+xkhdLB3fv3l2NoSphJghNjc4knX8EoVnx5/JblIHtKHq9K0YPfwWx8f/i4NGfHT7P3S0QndpNQWSr8mTKDVtfRVrmbvP+rh2vQFs7AsIeZYZiVV6Y+Re0IP1926rqWY1Jzy7XIKr12Th4ZBEOHlto9xgtLKy2nDv8dbi5SfNFYjKYsOszE2KXmlTIVLeZOkSNOmXA09uQtN4E79Y6tB5RfdhU5iEj/r6xcf45ajUUSFpbzUE6YPAjOhUWFjZAB99oCftyBHqeWE2LCezMGWGYVkN6RuoDelHYp+Sff/6xSlhvTtBUO++881RPkalTpzb1cASh3hEPiSA0M+hhsGhCXi30LBw+9iuOHv/T7n5nZ0+U2Vk67tz+UkSED1ElgRNOrIGzkztahQ5WSe3Mx2AYlz3Yw4SVqixzK44dX3pSjBBTo4sRJ72rSpCnV+RQrL1QLcDPty06tZ2Cjdtfq/V9UtJ3IKr1WXUYacth/zwT9n1bLiAK04B1z5rg7GFEqyF6xP1jxPrnTCe/xyZ4hABh/XVoN0EH9r3c8poJCatN8AwDet2kR8QIHTa92IBihF9Vi/+nqhUj5cPG+mdPjklvwoD7dIgZq2v2xnVTw/lpqNK+DVGZ68iRI8ozwaaJzVGMMFRs2bJlKgyNPUbGjx/f1EMShAZBPCSC0Mw4cGQhDh2zbtZVPTSS7P+v7OkeBmcXD+TknurU6+4ehJGDn1NlgHfv/8ruee5uQThr8FPmSlOqnO/uD5CTGwt3twB07zTDXCZ48463kZy2tYZjrvxZGJpVUHDCYU8RvUSd202Bi7MXduz7rMJ+hlox5IowoZ2lgGsS1qYREtQbA3vfhTOd5M0mrJ9jhL2oOO9IoCgLsFeHQOdEb0N5Irp5mzNw4bd6/HmN0W7IVV1x8gQMbHJdD//SufkDPa7Tod3E5me4CjWHnc4Z2sRcjVdeeQUuLi5ojjA/hjAnprLqWoJwuiOCRBCaGfxfkvkWXI1PTd+NMkN+vYQzsacJq0fRuxEdORqhQb2wbssLVXZpZ7ldX58oBPp3Vgnplp4PeiVGD38VLi5eOBL7O/YdppHftFCY2CbE+5z09mRkHkBIUHdER56LTTveRmr69hpf39c7GiMGPYEzmWN/GrHxhdr/s8EqWLY1CwY+oMPR301IK29c7RhOQMxY4NjvDhzqDqjUqtpp+grHjflYD//24ikRBEGoL2SZRxCaGSw1GdFqGHp2uRplhvpZMmZXdl43M/ugEhabtr+Bnfu+hF5X9Yogy+2yBDArU9mGYTGJPuuk1yU68jwVMkVrjXkaLKVbd2pu8JWLkVPnOTt7qST3/Yd/RGrGDlVSeP2Wl+DuWrs8EHac17rdn6kc/LFua1guXhW3+bTRqaRzRz8WemHGfqTDgP/pEdSj+uMpRujM49dS9TCJthmTLzD2E8C/8n54pzABKVtlHU8QBKE+EUEiCM0Uo0q+rh/DRwc9DhyxTng/nrgcaZl7an9NnRN8vFqr352cXNC3xy04b8Qb6jW47wPmhoV6nTMCfDvWQmDU9tlPncfcGdtyvhnZB+DJ5IVaUFicju17PsKZTF31WIfJgMupZtloe6EOQd10cPPT46KFTuh+rQ7V9aPMiwcOzC/PVxj5ql7ld3S5orwfSWXwf6fCVCA/CciNLRcnbgHl55TmAOvnAH3u1MHdgWJQfm3FOyIIglCfSMiWIDRj1m5+DpnZh9BcYI5GaVm+6nDODuv2yvhawrwTVxdvFdZVXJKDrbveR0bW/jqPw8nJAwaVGFA79Ho31b3esuKWXu+iXvYKANgycsjzqsHimUbSOhN2fGhEzql0pBpz1ot6BPeEKsHLKfRrZ9+4Z18QNkSk+LCHkwcQOUKHTpfp4N+h/Bpxy4zY9IqpPGfEgXAsihKKFA16aEqyqx6/eyAw5hOgJEePuL9N8GvHpoyyticIglAXRJAIQjMmvzAVW3a+h9y8uHrwltiUGqohIYE90K/XHaphIDuvu7paLHPXgNy8BJQZClFWVoTtez5GSWluLa7iaMB/zQgJ6qUEYHWiZMTAJ+HrU+4BOpMS2Vf+r/rvj1tgeYiUvSlkxeTx8/RwcnXMw/DjuQZU14+S+SF97gAO/QRkHwVcPIHosTolFOJXluel1KitjwP/mzh7AGWF1iFk477QQycd4QVBEGqFLOsIQjOltKwQG7a+jNy82Hoyvo3KA+DhHgSXqmJbbHB18UHXDtPQr+ftcNK7wN+3Xa3FCPHxjkCAXwfV0X3UsJfg4xVVZViYfRpmHSU754jK3akKX5/oM0qMGIpNMJaZcOzP6ue8963AsCf1qhqVLZ7hwMjXHRcjJMCBxtIUP5tfZt+T8q9FaT5w6GeT6hvi7l9DMQJrMWJR2doKSzFC6MU59EtFFZOXaMKWN41Y+6QBR341ojBd1v8EQRDsIX1IBKGZcjxxBQrZZrqWsAoWE88tMRpL4eLsg8Ki9ErPY0UtT/dgeHiEwNurFcKC+6oQrYbAyckNwwc+hkNHF+Fw3B8qjErDwz0YQ/o9hJS0bdh9wLo0sZurP4pLsup9PH6+7VRyflmXQhw6tgQGQxFahw1Tlckys/bDx6cN2kdfiDMBQ4kJm18xIW6ZCU6ugE/lulHBpPF243X44xqjVRiUsxcw5FEdwgez4EHNPAj979Hjv8eMKDhRXjK4Jj0t935jtCovXBuq885YkrEPSN1hws6Pjcg8ULGSWHlXeBOCewERZwHhg/TwbSMeFUEQBCIhW4LQTFm+9gEUWFp2NYS9PMpDvWzRKS+JPbHjpHfDeWe9pZLUGxt2e0/P2IPc/HjlwWkdOhgujL8BkHBiLY4nrlTCqFPbi1Uey5Zd78JQ4+XviujgBBMM8PGKRP9et8PTIxRnMmk7TTjwo1EZ2IUp1R8fPRboeLEeAZ11Ku/j9xkVrfhxX+nhE6mrdefv3Dhgz1dGHF+GhkF/MgzLwQrb9sRR37uAbe8CFpq6WljuOGacBCoIgiCIIBGEZggTwP9ZPbsB72A/B6NbxyuqTVRvLpSWFah8Dy+PUBQUpqnclH2Hf6jRNTw9wjCk3wPKc1Q/pYpPb44vM2LdM479k6B3ATpP06HbTB30zjqzV2XJZUarxHBXX2DC/JqFatmD3ofldxvrkgZVZ5iET+9GzIXAfw9DeW4oZqLPAzIPAjlHHbuOCSXI8v4aRvdEDJ01EL3Ou6DG3iOhIjt37sT999+P48ePo1OnTur1wgsvYMGCBXjooYewf3/dC2pYsn79esycORP//PMPIiMj7R5z1VVXISIiQo2jPkhMTMTWrVulY7vQ4pCQLUFohjg7ecDZyR1l1XZzqy0Vjc62UWNPGzFC2EGezR2Jl2c4ggK64Ejc7yhhDddqCPDrqLrMs3s7q4CdyeQnlec5pO+uWYiSkxu7lluv7lN0sDfIxheMKpeDPUcG3Fd3MUJCeunQ43od9sw1VQiHqgrmgfh3gqoMVt3/Tv6dAcsicBRdxtLy31sNAYY+Vf4szKmJGWdCwioTvMKBnDj7YqTUyYiE0CLEJFnXMc7xWIJcz1/U739/shG56WkYMW0mWgImk1E1Wy0uzoKbmz8C/TtBV1kyTj3z4Ycfqm7rv/32G3x8fODs3PJMnAceeEAJHBEkQkuj5f3fKggtAIZMdWw3GXsPft/g9/L37YDe3a4/7cvYMpyre+cZ2L7nE4sGiaeEF8PAApUQ6YfIVsObdKzNiTVPGJF1sObntRpiX2REjNAhbL4eucfL806Ks4B1TxuRddiEkN469LxRB1efmguU0jwT9n5VMzFCKLLYe8ToQChVxyk6lQSftN4E7/IWO0hYXd6vpPMVp4TVzk9MOPBD+Xcr+7D9axl1Jrw98yhiIwow/ZcIhKa7wa1Ej7D0YmR7f2t17LY/f28RguREymbsOfgtioozzdvc3QLQreN0hIf2b/D7Z2dno2vXrmjT5swpOiEILQURJILQTKHHIivnKJKS65iZWw2sdnW6ixGNVqEDlKckOzcWvl6Rqrt8Svp2lRfSJuIc5VURTlGQarISIyaUQVfZPws6dlQvzytpNVSHvndVLiqcPXQI6FSe/7HyASPyjpdvz40zoTDVhBHPV6yelnvchMwDJtUk0auV9bXLCk3YNddYrYejMqrrLUJ827KfiE6JjvaTgF2fGrH363LRwdCsVQ8YccHXengE6VT/kerY0yEXR6PKax9/PSXBvL3bAWDcciOcLLxRxsLGz9lqCDHCvC5bKE64vV+P2xpUlIwePRoJCeXzvHDhQuVFGDRokFWo1Lx58/D2228jJycHQ4cOxWOPPaaO084///zzsWLFCqSnp6vj+vfvj6+++grfffedCpVq3bo1rrnmGlxxxRVW9162bBm+/PJLJCcno0+fPnjkkUfQpUsXu+P8+++/lSfn4MGDMBgM6NixI+6++26cddZZav+xY8fwzDPPYNu2bTAajejXr58KQ+vcubMK/9qwYYM6jj95X0FoKUg2nSA0Y5jb0JCwotbpFKblCAzBCgnsDjc3PxWW1bPLNaoyloiRiji7nTKsDciGAVX0XzEBgx/W4eyX9eh9sw6u3jpkHzGhILn8GkUZJuz50oht7xiRvqd8G8WOJkY0ktazNK+1Qb/1LQP+mGnE+mdN+G26ESvvN2DdM0bV6JCekb9vMuLQj3V4UB3gHW29yas1MPYzHbrO0GH4HB3GfmodWnZ8ufUYKYbWPmXEljeMcHav+nbMrSmNsu+S2dMJONjW+v+5jV1H4PY9sSgyNGGCTB3DtOgZqYo9B79TxzUUP/74I/r27YsLLrgAq1evRnh4eIVjKC7efPNNfPPNN8jMzMRtt90GyzTar7/+Go8++ig++eQTJSwoZt577z3cfvvtWLx4Ma688krMmTMHX3zxhdV1P/vsMzzxxBP46aef4OXlhRtuuAGFhRUbt+7atQt33HGHCrfi9SiQAgMDleAoKSl3/d1zzz0ICwtT15o/fz70er26P6FI0p6RzysILQnxkAhCMyY8ZACSU7fUy7X8fdurhn+qglX4UAT6d4SPV/nqoHBmkntq4R5O8KvyWIZfrX7YhKJ0k8rLYFdzFZmjA6JGszrXqapcB38ywdkbCB9QsX4C80qYf6KRtsuIQz9b3yt5I/9rUlW1Wg0zqfCvOmECwvsBKTog52Rbn/xEYN93wKCHdCjKAI4sNqnGja2HQyXpsyO7bZf49J18mVRuCedAs69Z8rjP7Tqk74LqGr8vPB8dZvjAY4Aehe4VjfC0wAvgs7M11vbZg52duyE+oh2QnIkFyZlYM7gLYjyrUTzNDOaMWIZp2aOoOEMdRw9mQ0DDnvkj7u7uCAkJgZNTRS/cyy+/bPZcvPjii8ojsnbtWgwbNkxtGzlypPn3vLw85Rl58MEHMXHiRLUtJiYG8fHx+Oijj3D11af6FdHTonk4XnrpJXWdJUuWYOrUqVb355h47PTp083bmBR/4403Kq9Mq1atEBcXp8ZAzw2f57nnnsORI0eUt8Tf39/8jHxeQWhJiCARhGZMRPgQ1ck8LmE59HonRIQNw4EjP8NoKnWoghRL+zKhNDryXHRpP1Uq+QjmEKj1zxqRuMbBE3TlZXE1YUBD3Gx/moDj/9i5Rx4Qv7y8i7mlYd/9mlNVucjRX6sOf0rehHrBVvSQuL9M8Awz4eCPWsK7CYFdgXPe0KP7tXoVpmUvZ4WOy5gLKNJ0Kqk94qzyZ/JvV77/la1J6B8Wiju+bIe5U44jOcS6PPXa/rmIi+iGhPB21tcFMHnrIWwb3gOnE0xgr8/jGgJ6LizDqCgu/Pz8cODAAbMIiY4+5UajCCgtLVVhW5YwDGzu3LlKQGhYHuPr66uuzevawvwW3pOChtePjY3Fvn371D6GbxGGb1GEfPvtt+peFDoTJkxQnhJBaMmIIBGEZk7bqDHqpdEuehxSM3Zh/6EFyMk7Vul5ndtfgpCgntCx0wY72wnCSfZ+XQMxQkzlZW1rA3twjnxNj6xD5UntAZ2sRbF7UNXnN3SBpv3fWfcUydgLLP29AFujcxB9pRc6JXsjL96EtB3W57n569DlCvuDSykuwzeT4nHVL5F44KMOSpRs75pT7i06SUK4/YSYEyVlSC8pQ5Dr6fPPM6tp1edxDYE9jwm9Dq6up/420vOgUVlHBJ5DLCt42V6b4sLyuhrM+7j++utxzjnnKBFDzwtDuxg6psGwsHHjxqlcFnpv3nrrLbz//vsqLyY4OLjGzy0IpwsiuQXhNCQksAc6tZtcYTu9Ic7OnujUdopK8HZ2chMxIlTg6G9V7zfBBCNsvHDV5HHTg2IPz1AgtK8OnabqK4gR0m6CXnVzr4zIs+1vd6uniBV73d+/3J2JtzKTcW/UEbxVlISyQkBnoQ+c3IG2F9r3NpYYjRjo54VM/1K8dfVR3P/AHmzvZi1GqsJdr4OX0+n1TzNL+7KaVlW4uwWq45oKJrIzHEqDPUlyc3NVrxJ7tG/fXoVHbd682Wr7pk2bVEgYPR2WuSEaGRkZKjGdyeq2MNdk8ODBKheEyfHDhw9HUlKSWQDR6/L0008rz8zFF1+sQswWLVqE1NRUczK7ILRUTp8lGEEQrAgN7oUBvWbjeOIK6J1c0TbyPPj7tW/qYQnNnNx4kyrFWx16VF35iTUCaKgzH4RJ3KxQdXC+CSc2mFBwMpeEuRa9bqrauPYK12HsJ3oc+92kSvOyInPKJiD/BBAxXIdWw+iNMOHwLyYVKhY2EOgyXYe4v6C21TcUYzu6nCrL9e+QNARkumDdA2nIMxpxXlYAnhrUym7n+U3Z+bh211GklrBaWbmGK3Ou2RgfaNsK7qeZIOFCCEv72quyZdl0tbH6kdiDIU+zZ8/G448/rt4zCZ0hUQMGMNGpIt7e3rj88suVh4K5Gz179lTJ8gylYuK5Zfgrr0khweOYCM9ckAsvvLDCNbmdVbYoaph0z8aKTLInTGrn/uXLlyvhdO+996oxsKkjhVGPHj3MoWesJnbixAm7ifuCcLoigkQQTnNRwpcgOEpZFYW0NBjmZ0YPtDkXiF8Bq3yKfrN1aD1Up0SHk1v58f3vLf+ZvtukhE9Yfx08gqt3DVCUdL/21HHB3az3976FTRHLDXutEpaLhwnH/jCpviH1yYngIqQHnPIOUVDMm5BY7uFwAuaFpKKz3gW3IbTCuf/bf1yJEVJTqdTWwxUfdo9BL5/TsxocS/qytG/FPiSBSow0Rh+SqmAS+EUXXYRbb71VhUmNGjVKVdSqCnZ3DwgIwCuvvIK0tDSVG0Lxcdlll1kdx2vyWHpH6AFhlS57IVt33nmnus7NN9+s3nfo0EHli9x3332qyzy9Mh9//LFKuKcHheNk3glzTrTeKtOmTVPNESdNmqRCuuyFognC6YjOVFmgpCAIgtDi4J/8v240VtrQzzIEa9CjOgR1YcUpnSrle2BeeQf2mPN1aHNew6x2s08J81UCu0Dd12rsRlb4OrUt55gJR3414tifQGluze/FlAaPUCDrZP6xQW/CR5cfw56OeVWe56LTobOXO+5rG47zg8tDdwwmEyKWb69w7A0RwfjuRAbyqynp+3ynSFwbcfrnCDRlp3ZBEE5fRJAIgiCcYaieIV+ZkM3u6X10yE82IW6p9TGj39UhqFvjGpKHFxmx9c3y0CzmbAy4V4eYcXrknzBh40tGpG4tb87Yb7Ze5aVYipjdXxkR/y87utu/tlFvgt5o463RAZMX6ZDwH5CZYsSNHgcRH+S4y4XFwpYP6oIOJ8v0Ttx8EBtz8s37PfQ69PTxxIbsU9ss8XbSI9TVBdNaBeKONqFSBU8QhDMWCdkSBEGoZw5kJmBfRjz6hrZDlE8Imhv0PPSz6LRenG1CSZYRJzYALj5Aj2sbX4ywWeL298vFCDGVAdveMyFqtAkbXzAi9aTzITcOWPOYERPm61VHeOIRosOAe5zQeaoJS28oL9WbHFSMnZ1yuGQPnUmHVQPT8b/POsC74NQ/e179DHDxdkXM+UBSVgEytpeW1951kDIT8FdaDjq0cTeHXVkKkpEBPvgjPafS8+k1WT24C/QiRARBOMMRQSIIglCPvLvtV7y9dYn6nYbm08OuxKWdhqM54+anw1kvOqG0wAQWZbPsE9JYFKZpvUBOwTAsej80MWLeng9k7GP1Luvt7Atyzut6fPt3Fl7oHgvDSU3V9rgnxq4KwXvTj+J/P7dTyfi7YnIx/5xEvLnJFXN7tsWNu46h4GRJ15oQ4V6eK8BSvQtSrJsD/p1RuRhR4/JwEzEiCIIggkQQBKF+OFRQhGf2H8b6badq6hpNJry86WdMaj8Yrk7N/8+ti2fTGcfsBO/VCsgvr4Kq8I0GvCP08GptUJ3VNZiSwIaL9gjqpsOSvBQYLKKkjkYVYMzqEBS5GfH25GM4FHEqs397biHmHE5CWml5MnpNGO7vjQtO5pDkGQzKY2KJ7XtLnHTAsx0janxPQRCElohkmgmCINSR7KIy3L81Dkmp7N5svcqeXZyPlEL7OQSnMxn7TPjnFgN+GmvAyvsMKs+jLjBZfdjTegR2KxccwT2BoU+V/xPV7y6GZ508UA9VkcszpHLxlFlWsblIgYcBA7f7WYkRjYTiEvjUoNQuj3y5UyTm92kPl5NJ9vvy7Tc6rIyJIX4YHeRbo3MEQRBaKpLULgiCUAeOJhdg29HyEk8GowHPHH4LxWWn+liUuYWjT9cr8WPfDmgpGEtN+HWaEUUZp7YFdQdGv+PUoDkm7KJOT4pnWNWenBePJOH12GTze/ciPa6f3wbfXpSATN9SO70/whHj4Ya798WhyFj5P4lhrs5o4+6GO6NDMeakZ0Rj3KYD2JbrQE3lk1W6FvbtgP5+VXSEFARBOINo/jEEgiAIzZSSMiN2xp6qN1uq0yEz9Hy4ZPwHp5J0lLmHozBwOFZn5eFAfhE6eZUnP9cnzF34KTkDhQYTJof5I9rDDQ0Ny/JaihE1jt1ASZ4Jrt4NE/bl4qVDmP0edhX4X9twuBl1+HBPOgIzXNA23hNzLz6OPC+DuWGhJf7OTpgSFoDzgnzxXlwyXo892dnRhhsiQ3BHdJjVNobl7cwrRIYDIV8xHq44O8AH01sFoY/v6dlvRBAEoSEQQSIIglBLCooNsGwvkW8yosQ1ACXhE+zmDNQ3qSWlGLvpAJKKy1f934xLVivvDd1czyu8vCwvK2FpuAeyWWHNxv5HWjYCnJ0xNtgXrvr6iyB20ukwu0M4Pk9Ow2GfAhyOPuW5sOf/ePnYCaSUlGGAnxceaNcaXb09ceueY1Y5IMzznxTqb3VebGExpm8/gsOF1ZcKHu7vhQ+6xyDE1aVuDycIgtACEUEiCIJQBWzGZzSa4ORc0WD29XCGu4seRaXlqmSVofKQnfYne1XUJ98nZZjFCCkwGPHO3hRc9nkUCpKAkL5A3zv0FRoM1hVej6WBd35iUhY+u7X3uV0HnYOqa1tOAS7ddgh5J9Vcbx8P/NK3I9xrkMdhDzYn/Ck5E1tyCjDA1xNXtQ7CK8dOhW5VRkapwRzixX4gj7Rvja5eXXDPvjjsLyhGpJsLXuoUWcH7NOdIkkNihDzQtpWIEUEQhEoQQSIIglAJiYfTELc3FUaDCW6ezmjTNQzBEb7mBnZ6vQ6DO/lj69Ec5BSUYa+ppNJrMV2vvhvf5dhJ3j6y1YDMfeW/xy9n1Sojzvug/nM7ukzXI3KkCdlHWdmqYld1e6FlqzJzEeXuirfjks1iRKt0tSg1C5eFB9ZpTLP3xWH+ifLSu18kADNaBeLa1kH4PJHFBhzj4/hUzI4OQ0cvdyzu36nKY/fkFTp0zWAXZ/SWEC1BEIRKkSpbgiAINhQXlmLT0gM4titFiRG1raAMBzcn4Ngu6xX3QB8XnNsrCJMHh6JHQOVGJ8UIRckLR5LQddVO9Fi9C+9YJF7XhovDAlSCtCWDtwVYvc/cX96Zvb6gF2ZpWrbycnhH6BAxQletGFmRkYO+a3bj5j2xGL/lINZnVaw6lmzh6akNDAH76aQY0fjuRAYCXCpfd3OxM2wmtVeV2G7JUH9vu9vZoX1UoI/62dfHE1/2agu3egxJE+zTuXNnLFiwoMGuz2vzHqfLmOPj49X1169fr94/+OCDuOqqq+p0zffffx+DBg1C3759sXPnTjQXEhMT8euvv9bonH///ReHDh1CU/L2229j9OjR5vcHDx7E8uXL6/X7YXkN2/s1J8RDIgiCYEHq8Wwc3JJQ6f4TRzMQ2SkYLm7OFQTH/e3C8Vd6Nkpt7Fn3k6Vhv03KwBsWIuTZI0no4OmOcSHWFZscpau3B+b1aY8Pjqeg0GDE4A0BaLPP+lo6J8C5nhbn6RG4ZOshc1ldJoN/0bOtMvqzSsuwODUL23MKMcDPE/fEhMPH2QmFZQbM2HEUpRYFHW3L8lJUXVjLOdAoYWidzTbqisH+XkCs/XP4OdF3ZDmaMUG+CHJ17J/GR9q1QmJRKZZl5JhzU/hZv9ApCpe3qpu353SFYXPrsvJUTk6oqzOG+HurnJ6WwIUXXoizzjoLZyq5ubl48803cfPNN2Pq1KkIDQ1Fc+GBBx5AREQExo8f79DxCQkJ6jm+/PJLdOjQdBUQr7vuOlx55ZXm9zfddBOmTJmCc845p1Hu15wQQdIEZCQmYMPCechMSkSbnr0x7NLp0MnqmSA0OYYyI47ssOjMZwfa1QaDEfayAbp4eeD5jpH434F4q+1jT5aI/Se9YufufzJyai1ItFV6baU+2WDCyu+szfI25+rg7F4/BuFzR5KsxERWmQGTt1ZcYdyYk4/deYWY16cDZu8/biVGNEYHeON4cSkCXZxViFRdc2zYMX10oA+WZZyqesaqWT8nZymRUGo0WQkPDW2bl16PUDcXDPTzUsdq/UWqwt/FGd/0bofcMoM652BBeSW1qrwyLZlfU7Pw6MEEq7ymVm4uqgHk+BDrggCnI+7u7up1ppKTk6O8vEOGDFHG/+lMc+l44eXlpV4t9X41QazgRqIwLxe5GWkoKSzA90/cj90r/kHigb1Y99P3eP+mq5AWX8kSniAIjUZJYakSJVXhE+gBd0/XSvdPaxWESRYCo7uXO17oVN5WvK1nxZK87eqxTG9Yfx0GPayDdxTgHgx0vQoY9FD9/Zk/5mACN1mZmYcuK7fjl5Qsu/uZeP7PwM74pV9HjLJoEJhdWqZCwg4VVN9okCV3KQY4rqcPJSLCzRVXtQpSQoRVrZal5+D7ExkqBIvCgxKjstnINxpxtLBYia4Ba3djYbJ1+FdV0BMU6OqMwf7eZ7QYuWHXMSsxQk4Ul6rt3N+Y2AtNsd3GUJYffvgB06dPR8+ePXHBBRdgy5YtahtXqPv164fZs2ejqKjIbsgWf//xxx9xzTXXoFevXhgxYgTeeecd836j0YgPP/wQ559/Pnr06KGud8MNNyAuLs7h54iNjcUtt9yC/v37Y/DgwbjnnnuQnn4qJ+qnn35S4+b9+XPu3LnqvrWBz/nGG2/g3HPPVfNx0UUX4c8//1T7GPalzd3VV19daegXj3nvvfdw/fXXqzGNGTMG8+fPN+/nHHLbs88+q57p1ltvVdsPHz6sPBZ8Rm6/8847lRdD49ixY+qa3MdwMf6+f/9+tY9j2bBhA37++WfzGBnCdffdd2Po0KHo3r07zj77bLz88stqbhjKxmckM2fOVN8LbQw33nijuj4/y3vvvRepqanVhn1dfPHF5mfl/JWUlFh9R7755htcdtllak4nTpyIf/75x+53cvTo0eqZ+R2ynN+jR4+q7xjPp4eO36majMESy/vZhvRVFuZ3//33q89rwIABKlzvrbfeUnPF/294Tz7T9u3bUVdEkDQwZaWlmPf0Q3jvhun46JZr8M0j96Iw51TTNML3c++9DWsX/NBk4xQEAXD3doWrh/1KSE4uOoTF+KPL4Kgqr+Gs1+GjHm2xYUhXLB/UGf8M6qK8AOTmqBB0tBAlfXzKK0HVJ9Fj9LjgSydMnO+EHtdVncy+I7dAGfJvxyYjraT6PhqjA2vWWTzrZP6N/X1GDFy7B9ftPIojBeVCZ2VGLvqu3YOZO49ixPp9amyVQdHC8zuu2onh6/biveMp+CopHd+dSFcVtv7Lyq/gEeFoHDHVkkvKVL5L/zW7Vb7P7XtilVASKg/TomfE3qetbXvsYII6rrnx+uuvK5Hwyy+/wMfHRxnFNMI/+ugjPP/88/j777+tDGpbXnzxRRViw/yFGTNmKINv48aNah/DgT799FNl1PGa7777rjKsX3jhBYc9EgyvoXFJofH5558rMUORRCicXnrpJdx+++3q/tz+8ccf45VXXqnVXFDsLFy4EI899hgWLVqE8847D3fddZeaAxrp2jzwGTUj3h4UJDye1+L4H3/8cfz222/m/XyGlJQUtZ+igUb45ZdfDldXV/Wcn332mRICnM+8vDzz2MLCwpQA4zj0er16bm08vB8FGQUioYhjiBnn7I8//lChSp988gmWLVuGVq1aWT0L9yUnJysDOzo6Wl3jgw8+UPfmuAoK7FdPXLlypZpzio0lS5bgiSeewO+//4777rvP6jh+HhR3/I6NHDlSjZvC15Yff/wR4eHhajyW8/v1119j8uTJag6vuOIKvPbaa1i7dm2NxlAXeF8nJyclJimM+D3m/ycUhZxHNzc3PPXUU3W+z5m5lNNA5GdlYvOvC5GdfALuPr6I3bEVOanJVq7BjITjlZ6/5oevEBLVBh0GDm2kEQuCYJsH0nlgJA5tTURhbjGcXZ0QEuWH6G5hqqJWTWhjx/PBsq//DuyCtVl5SrgM8fOq98pbjvJveg5m7DwCTTPMTUzD7/074XBBsQqzYYnb/DIDXj2WjDVZeejm7Y7b24Rhf34hVmSWGwl1hYb/b2nZKrxr9eAueOhAvEqa16DIuLJ1YIVwLooDCgbtWEvhwd4hP5yw6dposwrn6PpxwsnV/h+TM1FoNOLTHm1r9HxnCswZsfWMWMKvWGJxqTpueIAPmhOXXHKJecWYRuPTTz+tDOiYmBh06tRJGbFMNK4MGoo8j9BIowChsTlw4EC0adNGCZZRo0ap/QxzGjdunDKQHTUE8/PzlQHq51fudeVKNcUHRQoNfxreWt5EVFSUMqJpHFJI1ASueHPlnoa4lr9wxx13YN++fWobxUlgYHleFMfi7195CB69C5pYaNeunVo9p9BgDo4GPSMcL6HnwtPTUxnuFCWEq/D0YtCIp6ihiBk2bJiaQxcXFzz33HM4cuSI8nhwLNzGcDqOkZ4efiYUKBQfhIY0xRq9KrbPwhAm7qMYePTRR81jpKeB4Wn8vOiBsIXzQiEwbdo09Z6fN+eeHiR6GiIjyz3jPFfL2/jf//6nvDkUGfSYWRIYGKgMf86F5fxSKPF7ps0bBduuXbuU98fRMdQFjoU5OhSBnEfmEfGz1LxMfD5+HnVFBEkdOLZ9C1Z//xXyMtPRYeAQxO7YhqwTla/oOcIf778Jr2/nwjc0DMMvmwH/sFZw9fCA3qnylU5DWRlOHDoAV09PHN+9E3kZaWo8rTt1rdNYBOFMxCfAA31Ht1ehW/Z6j9QVCpGzApveKHv/eIpZjJD4olIMW7cXuQajCm26LiIYySWlWJJa7tHdlluAzTkFWD6wM/blFeHibaeS2wnP8XXWI7uakDd7xBaVIHrFDrtCgd4TW0GyLbfQSrjY4l3F38tLw/wxL7nm4UO/n5wHoSJMYK/P4xoTrohreHh4mI06DRq5lYW/kPbt21u9p5eltLRcnFHo0BinAcewG75Y1Ykr/Y5w4MABJYw0MUK6dOmiXhkZGThx4oQSK7y+Bg304uJiZYxy5dpRtPAnhkRZQmHFe9QEhl1ZQu+FZeUowueyfE6GtGlihISEhKBt27ZqH6EnhUbvt99+q8KGGLo0YcIEZSTbws+M3hUKiR07dqiwNz5fWlpapeFse/bsUcKTY7WEc0mxVtk5vL7mlSHaAjTP0cSAvfn477//4CgxFnNFfH191bhqMoa6wGto80yxRDQxqc239p2vCyJIagFzP5IO7seqb79QYoBsX3rKHVkXivPz1CsjMV55WExGo0p4d/fyRv8JUzB48lSzGNq/drVatT28eYPyzliycdECdBw0BPlZWfAKCMQ5V98A36CQehmjIJwJNIQYaSoMxSbkxAE+kYCzR7lHxl5pW4oRwj2fJqRV2L8/vwg78grh5+yEYf7e2JKTj1BXF+zNL0KJyaTESE08EJZUds6fqVkYc7IogEYnLzfVOd2yk7oG7/9g21b4MD5F5bHApoLWW91icEXrPDxxMEE9S03Gd7igqEEaXJ7usJpWfR7XUJSd/PfaEmfnimOyZ+RWhqURbWsQMuyL4S0M6eJqNleX6YVwtDytvbFpaIb1Qw89pDwHttAzwLCousJnqWoc9rA9nmO1nVPL4gCVJZjzPHo+CD0M9C6tWLFChSvRg8ISxAz7Cg4OtjqPIVYUJPSU8BzOP3MdqqouxXvRG8KQJ1soMis7h+F+vL4tFFSVzYfBYKjRd8zJzgKLNmeOjsFRODZbtM/AkpqM31FEkNSQPz94E7v+/avW5+v0TjAZ7dV6qQjFiPazMDcHq7+bi6zkJBzasBZFebnVnY2DG8pjDMmhjesw47nXENrWejVHEISWzYkNJqyfY0RJTnn53wH36hA1Wo/prQKxIftUPxDKFEci/FmNauq2wzheVL5qnGSz6l27dNrK+Zq9RXQ63B4dhpiTYXCt3FzxWPvWKsfE9q9pX19PnB3og24+7kgrLsWe/CIVTkQhMcjPS+WedPFyR9zJ8TsK58ezjp3kWyos7cswPyawmyqZO+7ncY0FjSiGO1nClfLGhOE0t912G2bNmmXexpAuRys8sRwtY/SZC6EZxbt371YGKOP5GeJz/PhxKy8Pw7z++usvFSpWE7Rk/c2bN5tDzMimTZtqXBbXtj8JQ9i6detW5b2Zs0JPlCbw6M3g58VwJSbxU9hxHhkexBdzPpiozvAny1Awsnr1ajVP9EJoYiUrK0tdR5t721DZjh07qrmjkNPGwHMYqnTttdcqsWILz6HXy3L+mQzO3KEnn3zS7E3gfFgWU9i6datKtK8POjo4BntoQkPL0yHMcWoq5K9rNZQWFaHgZBJ6auzROokRL/9Ah8VIZexattQBMVIR3nfpR5UnoQmC0PIwGUzY9HK5GCFlBcDy90sRl1WsqoF90C1aeQ0uCw9waPWa1atiC4vNYqSx+DopA6M27EOv/3apBPbvk9JxU1QoZsdUDH1hmBmbMPZdswe37I1DTx9PzI4JB1OABq8rT5gfsm6vKllcE6a1ClRCSKgI+4ywtC+xzYjS3j/TMaJR+5H06dNHGZQUAAxf+v7771UCcGNC45ZGMcO0mO/ABPqlS5dWGQJmCasXMVyLCcrM5WDeAFfwmdvCa7Mi1FdffaXyEZhjQSFCI5TeB3uem6pg6BmFCPMPGF5FI5fVnujRYZJ1TaAHiJWlaNwyB4fjooiqDCZqUzxqz8kQJObABAQEqPwYzgHHxPyOvXv3KhHGz5MGNUO9CPNAmBzPMDbmghCKHG6jqGLuBcOKtLnXDHWGhFHwUfjwJ3M8OAa+GCZGMcH5tgfnn8UKOE+cL3pu6LHidSy9E8yfWbx4sTqGQpHhY8zxsIeXl5eaNwoyR3B0DPZgHxnm5HB8DO+iGGX4X1PlNYogqYI187/BezdeifdvvBI/Pf8E0qtISK8OJqoX5jZtDHJmUuXN3gRBqDurM3Px4IF4vBWbjMxmUJWpKAsoPPnvmgkmzBuXgAdu3otBW/fism2HMDrIF1/1aofrVb5I1ePlP1HPdojA44eb5u9IodGkchAOFxZj9r7jmLzlIKLd3eBq848nc2HSTs79oYJi3Lk3Dofzi3DHnjhzmBq9ODX5J5fz82rnqqurnemwz8gnPWIQ7mYd3kHPCLc3dh8SrmgzKZsJwDRqKQxYSrYxYQUshg0xcZ4hRDR+afBzpZ5laauDOS0UVAw1Y9IyjXp6K5hsTSgUWMGLgoRegjlz5qgE59pWPGKuCBO+H3nkEUyaNEmVk2W1J4Y91QSGD1GEUFAxKZ3jZXWpqnIU+AysKsaqVqzeRGP6u+++U/kSDHli0rmWVM3Pc82aNSokTsv34fxwfjlueh9olNNLwMR2/s5cGOacaN4bih1+LvyMaIQzJ4JjoDCiQOLnRcHDa2gJ8LZwXigyWYWMz0pBZVv6WRvbF198ocZGccTPlHlA9rjqqquU+HJUBDo6BntQePD56SFhEQAWc2A1s4YIx3IEnam5dIdpZhzfvQPznn7YaluvMRdg/38rUVxg7QauDp/gEHgHBCE7JQkF2Y6JEoZWpRy1n0hVGS6ubigtqbpPwKCLLsVZ06+p0XUFQaieH5IycNe+U/0FOni64e8BneHehGE+/PP+x1VG5CUA2ztn45PLrfsf3BoVisc7tMb7ccl46nDVDSFvigpReSNX7zxaYd8QX0+sy7FfGrMh4cw+2aE1fkrOxPbcyvNBfJz05vyYmuLlpMeGId0c7t5+ptOSO7UL1cPQJAoSikGhPByN5aPtVekSrBEPSSUk7N9bYRsrWfUeax2r6Ai5aalIOrhPiZEKHdl1OviFlZels4RixN27ZpV4PP0Dqj1mwy8/YulHb6Eov37KdjZH6AlKrqGYE4S68sFx6wRSrs7/Zacze2PCFbDBj+jhHQEci6woGLbmli+utPGwH95BE/zx9q2wuF9HPNUhAoV2jPowFyfEVVHytbZ4OFBmmaN5Jy4FsYWVh8CwS3ttxEiAsxPOCvDGD73bixipARQfLO07JSxA/RQxIgiCI8hf2UoIa9fB7rbslOQ6XZcJ6l3PGoWOg4ehOD8fbXr0hm9wCD646aoKlbKYKxLTuz+O792psk0NpVXHnRrKHDMKdv6zFNkpKZj66LNoSRgNBix+40Uc2rBGvXdyccH5N9+FriPKa6oLQkNSasfZXNYMHNCBXXUIe7cY7Y7qAJvm4/18vbAnrxC37bHfOZqBTxcE+yvBklxcivMCfdSqt2X51o5eHlidVfsFDk+9XlXMyrERDfTInBPoi4UpWeofKnZ8T7UTBlddKVl71cSqo62HK37t38nc0FIQBEFoWM64v7bsFZJ89BCCo9uiIDMDTq6uqmcHw50siendD33OH4/tS3+HyWRUYoR9QXb+8yfKq3WfwoU1mIuKHB7D3lX/qpCw69/6GM4u5SuTpZUkuZ1/8504cfggfnmlevHQYdBQ7Pz7D3Mp4qqI27kNeRnp8A6s3y7RTcn+NSvNYoQYSkvx29uvqApj4++6D3p91V2rBaEuzGwdhMctOouHu7pgbFDNOpvXlWXpOXjmcCKOFRarVf2rwoOwODULu/LL/z7RP8v1aqZznxPgg7uiw/DckaRKjfbu3u7YlVeIMZv2I89gRJCLE65tHYTvT2Qi/qRXpC5i5JPu0XjiUKK5AaElRwtL8KC/t7ky08PtW+O7pHTMOZyIglqIjOpo5+GKdh7uGBfsiynhAfCqopeJIAj2YSd0oWJ/F6F6zihBsuzzD7H1j8UVtge0jsT0Z16Bu7e3VajDudfdgsFTLleejKDI8oTGvhdMxJGtG1UfEu24mogRDYqBZZ99gLE33Vle59vFGbaSxMnZWQmGxN8rjtkSJiB1P+c8nHPV9eg8ZAR+e+dVFSZWFQwdc65B06TTgdQ4++XqDqxbjQPr/4PeyRmevr4YdtmV6DlqbKOPT2jZzIoKRZCLM35NzUZrdxdVBcrLufGM2oSiElyz86jqB6Ildz9/7ITVMZY+CAqNnZXkfbC07zlBPnggJhyjNu43l9ZNLzXgldi69zbASWHE0rv2xAjp62NdrpIld6+PDMH5wX6YfyIDXyakVSg57Aj+znpk2TRvHOjriXl9OsBDyvoKgiA0CaflX196DFiCtyakxB61K0ZIZmI8dv271O4+74BAsxghbp5emHDXAxh66RXoNHi4w/XE7bFr+d+Y98wj2PrHErvJ7q06lldhoBFdGezgPuuDuUrYODm7ILJrD1z6yDPV3ttkNClPTUsiqlvPyneaTDCWlSohuPSDt/DRrdeq75Eg1CeXhAfis55t8WzHSES5N26J2OUZuWYx4gisRDV9x2FMDQuAm0W+Bn9f2K8D3urSRuXFGBroHxg2V8ytpPTu+BA/XBtp3exMI9LdFXfHhOPOmPLSnjXBXQd837sD3uzSBmODfHBxqD/m9miLRf06ihgRBEFoQpq1hyT5yCEVXhXRuRuCItugIDcHC557XG0n0b364qL7Hq0QbsVO6ke3blJrcJknEmEyGMy9RCojK8V6JbEy9v23QnkgtKaFdYHXOL5ru3pVQKdDePuOiN+3C0UFBeo9jWp7eRMMTbIksHUk+pw/Adv+XFLV3fHv3I/RfsAQlcPSEmjbdwA6DBiCQ5vWVXtsbnoqlrzxIq557T1z2JwgnM5UZtxXRbEJWJedhyV9O6heH/wLMyXUH98lZeDbpHSH8y8q685+R3QotuQUqPwTXulgwakqgLOjwzAqyBfvxKVa5d881yEC10VV/zfpmtZByC8z4N24FOSUGdT9WWI2sRKPy1A/L7zWpQ3aerqhj68nLm9lv5SnIAiC0Pg0S0HCHIh/536E7Ut/M29jIvihjWutwqNid2zFzmV/ot+4SeZtO5ctxdIP36rxPbf/9TsKs7Mx7ra74eLmbvcYekNWfP1ZvYiRajGZsGnJz+pVnVfANzjU5lQTnF1dlfeEgqXSWxiNytPUUgQJyc+2ydqtguyUE6rHzPDLZ6LfBRMbdFyCUF+UGk1YmZmrDPyRAT7ILjPgpxMZePpw9X0N7PHM4SSV6/Jlr3ZILSnF2ev3IdNBceOm0+H8YF+V+H7L3tgK+2ZFhporVJUZTViSmoV9+UU4O8AHwwLKQ2RZxeq94ynIKzPgilZBDgsF3cnu7Xxpf/cySg2YvS8Of6fnIMzVWfVZcdPrcXaANy5o5D4YgiAIwmksSI5u24zf33kVhbnW5TIrCy/au2o5Og85C14nS96uW/B97W5sMqk8g6CoaAybOt3uITTu8zIz0JAwt8NRwcMKXRPufrDC9n2rl2PT4gXVns8clVYd7HcgPR2hkNVyexylpLAQ/37xISK7dkdoTLsGG5sg1AcZpWWYvOUQDhSUL8yEuzojtaSsTmFVZGl6Du7aE4u9+UXVipFLwwKQUFyCjp7uKik+4mRomrNeh8cOxitRwHC1t7pGWZXL5f7JYRVLk1OYaOKkLlCg8H5s9EjRxspdTdVxWBAEQTiNBUlZaaldMVIV7A3Ckrmefv7oPeYClYBeF45t31KpIKEBH96+E04cqn3VBIZTZSTGV7qflaAMDggSekamPPCE8oTYErvTTgiYDexxMvram9S8tRT4+TC0Lz3efgnTqojfu1sEidDs+Tw+zSxGyIlaJHVXxg/JjnkXi40m/Ny3Y4XtE0P91as54OJADxNBEASh+dCssvgOb1xbIzFiSUF2Ftb++J1VpazawBAme2VzGQ6wZ+UylBbXvKKWJTF9+9dLL5EpDz6hQrJse5eQ4Kg2lZ7XYeBQ3PzhV7j5wy9bZH+OMbPuMIssvbNzee6NA4TGtG3gkQnNnZ+TMzFqwz4MXLsHrx49AWMz6CFiS2zRqRyM6ujr49EgK07+LlIOVxAakvj4eNXhe/369U09FEE48zwkNPT//vT9Ol+HjQsHXnQpEvfvVd6StOP2S8FWRllJsUqK1yo2UYgwkX3j4gVIPXakzuMrzKl752aGp8Xu3Ia/P3kP+ZkZyisw/q77EdImRu1n08U9q5YjNdZ6vDTUJ85+oNxQb6FEdO6KWe99jrS4WPiGhqnyx/OffQRFubmVnKFT+SOsTia0bLbk5CO71ABnnQ7bcgvQ19cTIwJ81L6tOQW4dU+syssgLx87gaXp2fixTwf4NGLp3uoYG+SHeSeq92Tw//BLwwMQ7eGmGgueOt8XBwuKVI8PR7FMWPd11uPGyJaTcybUP/w3My2nFEWlBri7OCHY10VC5wRBqJZmY5km7t+nOpNXRdezR6Hr8JFY8PyTlR+k06Hv+RNw9vRrUJSXh28fvReZSQlql7ObO8oc8HAsfOlZ9B9/ESK6dMPhTesrLRdcG4KjouHh41sjT5BPUIiqCqXlmLB7+y+vzDFX3WKI0u/vvoaZL76FjYt+wurvv4LRUGbXi5SdloKA8NZoybD8MRtZEg9vH8x67wsk7N2tti//6hOkxR2Dl38gep03Dt3PORc+gfbLiwqnN7+mZmFuQprqd8EqTFtzCyscc0tUCJ7oEIE/07LNYkRje24hxm7ar0r4ntvIDQ5tSSspw1eJaUguKcPVrYMw70QGCquogMX/+x85mKie/fLwAPVsvXw8MaNVkPKyXLj5IPJtOqPbw9/ZCYv6dsDKrDyUGE2YEuaPVm5SlU6wT0JGEXYcy0VRyanvlrurHr1ifBARaL9YjCAIAtGZ6tJIox5hed7P7ppV6X5XD09MuvdhFeu//a/fUFhJGV8PXz/c+vE3Vp6XQxvWqk7oMb374pM7b1RlgJsK5m6w4zuriFVVAUsjMCIS/mGtEbtzKzy8fZUBvf7neXaPHX/nffj1rZcrvRZDvG7//IdKq4gJQnOm0GDE7rxCtPVwUz0j4otK0M7DTSVLW8JqTY8dTMB3J6ovQMHE5+3Deijxcv+BynO73usWjYstErLXZOapylD5BgOmtwrC1PCGKyHLe4zesB+xRae8GpND/a08H1UR7OKM7cO7w8lilZrJ8X+kZsPdSY8AZz3u2x9v7rwe4OyE/r5e6ODlhlmRIWjdyP1UhNNXjGw4UHl5/UGd/BpclDDM6emnn8Yvv/yCnTt3IjIyEnPmzMHBgwfx/vvvIycnB2effTZeeOEFuLuXj2X+/Pn48ssvERsbq5oMd+vWDQ899BB69iyPkigtLcV7772HhQsXIiMjA/9v7z6goyrTN4A/6b0XklAChI70ZsGyoGJDBBS7f9eytrXg7rp2dO29r2vvuqJrwcoCKq4iCIL00EMKhPTey/883zDJJJmZTMKkAM/vnByTuXfuvTNIuO+85UtKSsJf/vIXHHPMMaak6o9//CNuuukmvPbaa+jZsyc+/vhj7Nu3D0888QR++eUXlJaWYty4cfjb3/6GIUMsa4vdeuutqKqqQnh4uDmun58fZsyYgZtvvhm+vr6mZGvq1KnmPIsWLcLmzZvRo0cPXHvttZg9e7Y5Bp//1FNPYeHChcjKykJgYCCOOuoozJs3D5GRlt9HqampuO+++7Bq1SoEBwfjsssuw/vvv49rrrkGs2bNMvv85z//wauvvoqMjAxz/eeddx4uvvhi816IHJYZEn5qP/a0GVj99ecttvmHhGLQpKPx8f13NjzmaKQtA5WM5E0mu0G8+ebIYKvJ516M/73/JroKs0AMKBJHjcOu1b+2un/+3j3Iy7DcKJXk5+LXzz+2u19geKTTYITM+6XUuRyEGABcsXGXmeDEIIJlV1wjI9bHGy8OT8Qx+0uv+PnKuWt34DcHK5A3V1MPFNfWYnZcBO7cluFwYcHX07MbApLk0nJzDuvaGb8UlJrrmWlngpQ7MHCwDUZoSU4hxocGYtX+1xns5YkSBxmP3Ooa04ge6NX4dz/SxxsXJEQ1/Lzq6DBsL6tAVmUNJoQFqSlc2oR/75gZcWZ9SjESIvw6vHyLN+kPPvgg+vbta278r776ahxxxBF4+eWXsWvXLnOTzyCEN9282WcAc//992P8+PHIzs42N/B33nmnCWqIAQ1v+nmjz2CFN/A8pnV7bW0tli5dig8//BDl5eUoKyvD+eefj969e5sgiAHGc889h4suusg8hzf99N///hcnnHAC/v3vfyMtLQ133HGHef69997b8Freeustcz0DBgzA66+/bq6L15mYmIhHH30U33//vQmueMwtW7aYQIrntB7r0ksvRb9+/fDBBx+gpKTEHJvnsuI1P/nkk7j77rsxcuRIbNq0yZyPAdUtt9zSoX9OIs11mxCYo24HH3UsvOxMjaooLsK6xd+2uLk+5dq58A0MbLF/Vbnjm5EDbXp3BwYWrgQj1HwEsL2RwAzO2PviioLMvS5epUjX4djWTzPz8NDGNPycmoO5yakmGLEGEdYF+7Kqa3DO7zvwdkaO+Zk36K4GIzQmJBB9A/zw8d48p6uce9rcRH2+r6DJQn7EEip3L3LIEbonrtyCN/e/tibbzVhbDyydOAQ/ThyCtUcPx8ODeuG63rGIadZ0PiUyFIEurEI+INDfjN9VMCJtZXpGbMq07CmvqjP7dTRmEKZMmYL+/fubrENhYaG54R40aBCmTZuGoUOHmowJMUPBgIP78aZ+9OjROPvss7F161aznTfxzHgwA3LKKaegT58+mDt3rsmKcJsVMw8MgHjsBQsWID8/H88884y5yWdWhNkSZmTee6+xeiM0NBSPPfaYuS5mQ2688UYT7Nge97rrrjOvxXreuro6bNy40WxjBueRRx7BxIkTzbVzv6OPPrrh2r/++muT0eG5eQ0MZHg+26IYZn6YLTn99NNNAMX3h+d59913UVnp+gANkUMmQ5KbkYaP7rvDNGi3RXhcPJLGTsDmn5Y2PBYaE4s+I0a12Le8pNiUbtVW15hRuTVVrjd1Wnn5+LRYFd0dWI7mLIhqLrJnb+RlpDUJzqrKXBt3HBga1q5rFOlMF67dYfoW6Jl9ZvaAQ7wN+vvWdHMzXesgqGAGIdDTAwU1dUjw8wGTBWNDg3BXkqWf6ondPIljtuVaYXaa3O09diCu37wb3+YUOV0JfXlhqXkt1qb7S3taeqG4sCAXSdxcUo5jIoJxzwDLJ7IiHYUN7O7c70Awe2AVEBBg/ssbeisGBix3ogkTJmDHjh144YUXsHPnTlO2xUwDb/yJGRWWbI0a1fSegqVVZJ2CxWDEigEBf7aWTVnPyeDEGiwQf7ZeH40ZM8aci+eMiLD8vmF2wyoszPJvtzVQYBC1bNkyPP7440hJSTHXz+cy8CBmO/h8Bl1WDExCQizZZAYrmZmZJkPC4MmKr53nYNkYy9NEDpuAhI3W791+M6orWjacOsPm7iWvvWjG9FonSPUfNxFHzTrPNC/b4rofH9x9i8m0UHBUDEKjo825+TxO5HIFgxEff3+zWjzPz/Ind/SjtCUY4fUec+5F+O9Lz6GytPGTFFckjhrbsICkSHf1a0FJQzBiuPCBPcOQ5QWluCA+EkcEB2BDSePvk8nhwbimTwyu35xqsiAp+8uf9lbVYHhwAK7uE2sWF3RmSW5Rww3/nPhIvJqRjfQKy4cTAZ6euKZPbMO+FbV1+C6vCJ7wwJSoEPi2sRabPTALbYIRqtv/NtiGWzG+3nYzH4OC/PHuSK2pI52H07Tcud+B8LYzRdJRP8QXX3xhyrqmT5+OsWPHmv4JBg0s4yIfn6b3Eo6wB8TKUVsub/Rtr635sa1BkJeXl9Prth6fWR+Wkp111lkmO8JsCvtYWG5lPY71mI6uh1jmxcxKc/Hx8U5escghFpCkbVqP5Z982OZgxJolsAYjxOCi3+hxJkPS3MoFnzQEI1SSm41xp07H+OmzzMrwnzw0r8n+rHF19EslYeBQHHXOBQiJisYbN12Fmg5skE8YNNSMILbF1/nFkw+1+VhRvXpj5t/vduPViXSMglZWCndkWLC/Ka36aHQSnkjJREp5FU6LDkPfAF/MTU5rKPmyKqutwz079uCdPdktJmw1t8wmQGL/xeLxg/HJvnwzqWpGbDj6BFhuSPZVVuPM1dsaej4GBPphwdiB5jmu8vX0MBmdYpueEAYjHLf7crpl2h77aO5JSmjSqC7SVTjal9O0nJVtBfh6mv26E/aVsETLtm9jyZIl5r+8B2C2hYEDG+StDek0Z84cnHbaaaZEy15jPRvVc3NzERVl6dNixmHDhg0meLBi6RX7T6wByJo1a0zGhFkNPtcZloSx/4P9MrwOK2ZJ2NxOvN758+ejoKCgIUvCbFDx/hH4vDZmcdhTYptVYqkXe2tYDiZyWPSQcBHD+ffehtT1v7f5udF9+sJ3/4QMW7YBiq3SgpalYCX7FxRkEMN1S1iOZf15+l/uQN9RYxHaI87OufuYtS5Co2Mw4sRp6CjM9sy67V4zlau9/IJDcOSs88waJRc/8iy8vLo8ISbSqn2VVa4kRZr8EuP4XpZgcRIXMyGvpudgcW6RWU9k1u87WjSF29pR3noZZmVdHX4rLMUzKftw8bqdeCMjB+fFR+H6xB4NwQi9kp7d5Fzbyyrt9oA4w4zKTX2b/u5h5ucfA3uafpF/DUvEr0cOw+wOnOwl0hb8EI+jfZ0Z0Tek261HwizA6tWrTXDAiVRvvvmm6Z8glnUxQGAzOkuaGKhwH5Y4MYvCaV32MNvCAIB9J+vWrUNycjL++te/mmb3c889t2E/TrViIMQggQ3uzz77rDmXbRmXI5yYxdIrXpO1zOyuu+4yr8NajnbGGWeY0i+em9fw+++/m0lfxD8Hfl155ZV45513zGvma2Mgcs8995gSMzbji3SmLrlD5SjeXxfYnxblipy03Rh98mnYu21Lk8cdLW7HZvlda1Y1PuDhgcFHTm74kWuWHDlzDmqqqxt6LAZOONL8/Plj9yFl7eqGNUQmnHl2w/NOuOQKRPXsjS3L/meyPe7qJ4lJ7IfoPon4+oUnWl2bxZGjzrkQI6dOQ3CEblrk4PF2RjZu2WpZN8gqsA4os/PRiZ+nB94+oh8GBfs3rI3xeoYlELHau3+U7YFiIz0Dkbz92ZtFuUVYXVSGd5qVRnEUcXOvpmcj3s8H58c3TrVqzXV9YjExLAi/FJRgWHAApkaGNJRj8Uuku+FI34mD0GIdEmZGRnTTdUh4E8/SJwYCvAFnVoHTq9jYzawI+zHYL8IsBqdsMbvAfZhZYdM8p3I1x0CBN/icfsUpV8Sxv5x0xcZxKzbQsySLGRo+55JLLjEN5q5g1oZBEs/BAIj9JZMmTTLX+tJLL5kJWwxsOM6X5WfM6HAfTgdj0GItF2MzPsvNGJTwWNHR0WbfG264wW3vsUi3XoeEiwL+84oLDugYlz7xIpZ99B62rVgGbz8/TDxzNo6cfZ7D/Vd/8wU2fLcQ3r5+GH/mLAyadIzL58pK2YnqykokDBxs6R2xg0HJN/98CrXVVa2WfXU0Zndm326pgRU5WHCq1Cvpbcsm9PL3wavD+2F0qKVM4aqNKfjcxfU53OHbsQPxSkYO1hWXmXG5Y0MC8VcH65m8eUQ/nBKjoRJyaNNK7a1j3wozJAwEOgqb0tnsPnly44ev7C9hZofTvqzN7yI43BdG/M9D85Dy+2/tei7LqljORFUV5fD08oa3i81nHYlv5Z6tyairqcbyT+fbLUfz8PJCz8HDkN7ujErz1tam2ZW+I8dgymVXq3ldDiof7s3FjcmNk+PaYkiQP36YOAQ7yypx1pptyGqlQd1dPPf3iGwtaxyPeXRYEKbFhOGxXZkt1gWZGRuOF4c3TuMRkcNTZwQkLAVj9oTrrpx88skmu/P000+bEq8vv/zS5YZ9kc7SZU0FXFWcGY6MzZsQ2y8JR86ag9z0VKxb8l+UFxUgpm9/DDn6OFOWZcbaVpSb7XH9B2Lc6Y2NYb7+rddbdhZ+CsT+EiorKmwSkDCLc/HDTyMyobeZ0rXgqYcaAjL/kBBU7G80a539YCQoIhJXPv86vOxMGBHpzjIrq/HXLc6DkdOjw0yze05VNbbYBACUXFphGtRv2ZJmNxgJ8ADK69sebHBC1vricuRU1cBem/3J0aFNRvPSssJSbCytQA8/H5Q0u84YX90AiEjn4Mhe9rv861//Mv0p7AvhSu5vvPGGghHplrosQ3I4YDnZhqWL4RcQaIKoHv0HNNlesC/TBDHFOdn48B+3McXSrvNExCdg2tU3NaxOL3Iw+XBvHm5MTnW6j6+HB+4dkID39uRiQ2lFk23h3l5IPnYE+i1di/L9Cya21xW9ouHj4YH5e/ORW2MJbgYG+mFbs+BiWlQoHh7cCxN+2WT6S+zhJCzrNo7o/WrswCYN8CIiImKhj9M70MBJR5svR8L3T/EKi+1hGu+3LPuxzeeYNPNcsy6JanTlYOXjwv+6XD/ktm1Nm92tONqXK7vH+vo4nKbVy88H6S40uAd6euK/uUUNwQgxGGFTOUf/coX44cH+ZiTvwzv3mqyHo8Z5BiN/7xdnruv0mDCEt2H0r4iIyOFE/0J2E3/4vyuxdflPqHeykBH5BgTALygYVWVlGH78VBx19vkKRuSgtqbY9YVBm+ME/9GhAbhmY4rT0b6uBCORPl54NjXL7rYRIYF4cGAvvJKRbUYKu4KZlksSohHlq1+zIiIizqhkqxtZu+gbLH71BYfb2bQ+85a70WuY/fHGIgejucmp+GBvy7WCbMu1mCHpSAGeHqitq4ejkKZ/gB92llc6GSnR0tzEHvh7f612LCIi0hoFJN3Mvp3bsXHpEuSkpphFEbmWSHhcAmqqKhHZqzc8PS2ruoocKpYXlGDWmu1onhtM8PVGrK834vx88G1u+9bjOVAs9Qrw8mzRQ+IMe0f+PSoJkyPav6ipiIjI4UQBiYh0ue9zi3DVphQU1TgvWexMnLR1U98eeCE1C5UOmuVDvDxNP0lzSycOwWAtYCgiIuIS+6v8iYh0oj9EhaK81n2fjbS3a8Pfs7Efi2HGkyn7EObl+NekvWCEalrpBRMREZFGypCISLfAEbppThrTXekDifLxxk2JPZBSUYXnHTSotxXDkbaGFwxrAjw90dPfB1f1jsVFCVFuuRYREZFDkTIkItIt3JWUYPov2otrkHCa1hfZhbi1XxwGB7qnZKo9uQ5+ylNWV2d6T7jo48eZjpv2ReTgtW3bNvzwww8duqr7xRdfbL5PT0/H4MGDsWLFig47n0hXUUAiIt3CmbHhWDZpKG5O7GF6M6zCvNv2a2ppfjF+LSzDkgmD8fSQ3jgrNtxkLLrSJ/vyu/gKRDpJfR2QtxPI/N3yX/58CLvqqquwfv36rr4MkYOeBuSLSLfBlcxv6R+PGxJ7YEVhKeL9fDAg0A/ztmfgFRfX/6C86hp4e3rgvPgoTAwLxmdZBW6/1iAvT/T08cLWitbXOAn38cIHe3ORXFKBYyKCcXJ0mNuvR6TLZW0AtnwJVBY2PuYXBgw+A4jVuHoRcUwZEhHpVopqak3/x9t7cvBDXjG+zysygcUwO1Orwr29MLtHRJPHOBj7y+wC7Nnfj9I/0A8jQwIO6JrYn9JcaW0dUiobV3R3to7K3opqzE1Ow0vp2bhk/S48vivzgK5HpFsGI+veaxqMEH/m49zewVjO9OGHH+KCCy7AiBEjcOqpp2L16tXmsRNOOAFjx47FTTfdhIqKiobnfPTRR5g+fTpGjhyJ0aNHm+faZjzWrVtnHhszZgwmTJiA66+/Hnv27DHbpkyZgoyMDDz//PMNZVXNsU33rbfewrRp08w5Tj/9dHz55ZcN2/ft24e5c+di/PjxmDRpEq6++mqkpKR06Psk0h0pIBGRbuWCtTvweEomvsouxN3bM3Dhul2YunILcqtb3vwPCvTDU0N64+a+PRC8v8yrFjAZkWmrtqJw/3PeHtEf58ZFtrt065y4pkGPlSsLNh4fEYxfCkubPPZi6j7UOBglLHLQYVkWMyPOcHsnlG899dRTuOKKK/D5558jJCTE3OAvXLgQL7/8Mh566CEsXrzYBCG0aNEi/OMf/zD7f/PNN3jzzTdRWVmJO++802yvra01JVkMRBYsWGC2Mxi5/fbbzfaPP/4YcXFxuOyyy/Dcc8/ZvZ5XX3214ZoYiJx33nm45ZZbsHz5cpSVlTUEMu+++y7eeecdREREYM6cOSZQETmcKCARkW5jfXEZVhWV2d22r6plQBLs7QVfT0/8qVcMSpqN4M2ursH01dvMJ5RcXHFcaKDLq6xbRft4YXpMGM7v0b4pWQyA7JVnldXVo67NVyPSTeWntMyMNMft3K+DzZ4922Qu+vfvjxkzZqCwsBB33303Bg0aZLIUQ4cONY3oFB4ejgceeMDs17NnT5MhOfvss7F161azvaSkBPn5+YiNjTXbhw8fjqefftpkWSgyMhJeXl4IDAw0x3KUHbnkkktwzjnnoE+fPiYAYUakpqYGX331FYqKivDYY49hyJAh5hp5PcHBwZg/f36Hv1ci3Yl6SESk2/D2aFsOY2RIoPmvv6en6elgGZWtrWWVJsCZEBaEd/bktnm0b051rZna9WW285utXr7e2FNV0+IY58VFILeqZY8JQxE3Lrsi0rWqity73wFITExs+D4gwFKqyUDAyt/fH1VVlnJOZj527NiBF154ATt37sTu3buxZcsW1O1fRygsLMxkNu677z48++yzOPLII3H88cebUjBXMJjJzs7GqFGjmjx+5ZVXmv/ee++9JmDiddhilobXJXI4UUAiIt3G0OAAhHp7urRiO/tHrugVY7739/LEjYk98ODOvS32q6itxUtpWdhdXtliW6Cnh5nudWF8FO7dscdhdqa12IG5G3tXvKOsEh9ktpywFevrDT87fSkiByXfUPfudwC8vVve1nh62i8G+eKLL8xYXfaQsL+E5VTMjrCMy+qvf/2r6SFZunQpfvnlFxOcsAzrs88+g6+vr9Nr8fHxcbqdgU+/fv3w4osvttjGrIvI4UQlWyLSrdw/oJdL+5XV1jZZWZ1BRQ/fpjcjo0ICMG9bBuZt34MiO6uqs3Tq35n5+CG/GPNHD2gybrgtMqtqEGTnpudXBwHOvKQEeLYxGyTSbUX0tUzTcobbuV83wr4Slmg9/PDDuPDCC02mIi0traHcilmTefPmISoqCueff77JkjAYYfYiOTm51eOzh4XlXs3HAt9www2mn4UlWuxJ4X7M7PArISEBTzzxBFauXNlhr1ukO1JAIiLdypz4SLw7sj8S/Jx/ulhVD6wrLkfl/vKKf+zY06LP5IzocGwqa5kZaW5+Zj7Ka+tQsf9YreEkr+aCvDxMxqW1X6xDAn0xOy7SpfOIHBQ8PC2jfZ3hdu7XjcTHx5spXBs3bkRqaqppWmdzObGsiw3m7PNgDwqDkF27duHTTz81pVzsUaGgoCAzFSsnx/5Y8j/96U+mj4RN9jzH22+/jSVLlmDq1Kk488wzzbEYoKxdu9acgxmbH3/80UwMEzmcdK/fDiIiAE6MCsX9A3s63Yerus/6fTvGLNuIH/OK8b/84hb7bCtrHO/pDMvE1hSXobreeRAyIzYcV/WKMZO8miurrTMZF3IW1jwxpLHGXeSQwXVGRl7YMlPCn/l4N1yH5K677kJ0dDQuuugi03T+/fff49FHHzXbmNVgQPLKK6+Y0b6cfDVz5kyzWvobb7xhGs+JTepcqZ2Ttuzhsa+99lo888wzZuQvJ3xx6tbEiRNNZoQBEM9z+eWXm2wNp2u9/vrrSEpK6tT3QqSredQzLyki0g39JzPPNKOzWZ3riuTX1CLU2wulNbWwbRVnXsLeL7L3R/TDRet3OQ0Q+KnMi8MTMT40CBOXb3LabP6/iYPNeiKOek1ac35cJJ4a2thgK3LI4WhfTtNiAzt7Rlim1c0yIyLS/aipXUS6rdNjwlFdV4+5W9IaAo6Cmpb5CUcxxMbScqfBSB8/H7wwLBF9A/1wxYaUVrvXL1i3E2kOVmZ3FBRZsytz4iLx+JDezk8gcrBj8BFpKWcSEXGVMiQi0i3tq6w264ik7l9xvaPws9t4Px9kVNoPNFwR7u2Jitp6VNj5dcptGyePgJea2EVEROxSHlVEuqWX0rIdBiO8tbedsHUgmEGxF4zYa1x3xNvDE70D7I8AvW9gLwUjIiIiTiggEZFuKc1JZoR5iIq6erMYYkdpyzohFydE4db+8SZQsm26f2RQL5yjiVoiIiJOqWRLRLptQ/t1m1Od7uPv4YEAL0/T7H4gmvd/cHzvlb1j8MzurIbHhgT547Ke0XghNQsltXXo7e+DSG9vnBQThv9LiDLrivxWWIoF2QWI9fXBBfGRiPBRm56IiEhrFJCISLfFm/83M3Lg5QGcHh2OF9IaAwSK9PFCpI83truw1ogzd/ePN6vEv5aejd7+fpjbtwdi/Xzw2b58LM4tQr8AP1zWK1oBhoiISAdQQCIiB43Za7bj54KShp/vSkpAoJcnbtua7tK0q3hfHwwP9sfivMY1S86Ni8AzQ7U2iIiISFdRQCIiB42K2jrMz8wzGZETIkMwJSrUPP5tdiG+yilALz9fnBIdir8lp2NLeQX4261q/6+4aB9vfDQ6yWRCvsstwsrCUowODcTJUaHwUNO5iIhIl1FAIiKHtLXFZciuqsHR4cEmmyIiIiLdiwISERERERHpMvq4UERERMSO/Px8fPTRR51+3hUrVmDw4MF4+OGH7W7ntk8++aTJvunpjb10lJWVhWnTpuHEE09ERkZGi2NMmTLFPM/R18UXX9whr43nfe6558z3fA08l4hGxoiIiIhb1NXXIbMiHWW1pQj0CkKcfy94ehy8n30++uij5kb/nHPO6ZLzv/XWWzj55JMxduzYNj2Pwcgll1xivn/vvffQo0ePFvt8/PHHqK21jExfs2YNrr/+ehN8xcfHm8d8fHzc8hpEXKGARERERA7YztKtWJa3BKW1jZPwgryCcXTkVPQPGoSDUVdXtffs2RO33XYbPv/8c/j7+7v0nOzsbBOMeHl54c0330RMTIzd/SIjGxdtDQsLa3jM0f4iHeng/dhCREREuk0wsij78ybBCPFnPs7tHY2lPx9++CEuuOACjBgxAqeeeipWr15tHjvhhBNMluGmm25CRUVFw3OYEZg+fTpGjhyJ0aNHm+euX7/ebLv11lvx6aef4tdff20oK2IZEx+3ZfsYy6eGDRuGl19+GZMmTcKsWbNQV1eHffv2Ye7cuRg/frx5/Oqrr0ZKSkqrr+mee+5BZmYmnnzyyTYFI76+vnjnnXc6JLgoLS3Ffffdh8mTJ2PMmDG46KKLsGHDhobtfM8vvPBC857yfb/33ntRUtL0/wuR5hSQiIiIyAGVaTEz4syyvO/Mfh3tqaeewhVXXGEyCiEhIebGf+HChSZAeOihh7B48eKGnpBFixbhH//4h9n/m2++MdmEyspK3HnnnWb7HXfcYYIa3nT/9NNPLl8Dy6CWLl1qAqEHHnjABEDWfox3333XBAoRERGYM2eOCVSc6du3rwlk+JxVq1Y53Tc3Nxf/93//h127dpkeDdsMiDsxqPvxxx/N+/nZZ5+hd+/euOyyy1BYWIjk5GT88Y9/xLHHHosFCxbg8ccfx8aNG832rs42SfemgERERETajT0jzTMjzZXWFpv9Otrs2bNN03T//v0xY8YMc5N89913Y9CgQabBe+jQodi2bZvZNzw83AQM3I+lUcyQnH322di61ZLNYUDDMin2UrQ108AbcAYTPN9XX32FoqIiPPbYYxgyZIi5Fp43ODgY8+fPb/VYzHjw2m6//XaUl5c73O/Pf/6zud7Q0FBzro6wc+dOE4zMmzfPBB2JiYkmizNz5kwzAOC1117DMcccYwJBvn5mhJ544gmsXbvWZJpEHFEPiYiIiLQbG9jdud+B4A2yVUBAgPlvnz59Gh7jDXtVVZX5fsKECdixYwdeeOEFc6O9e/dubNmyxZRYHSjejFtt2rTJBEY8ny1mY3j+1nh6eppsBAMnlm4xc2MPg6pXX33VBAzMqrCZnaVT7mQN1hggWfn5+Zk+F+tr5fvIrFJzfK0sVxOxRwGJiIiItBunablzvwPh7e1t94beni+++ML0frCHhP0l5513nrnhZhlXW9TU1LR4jDfpVgxw+vXrhxdffLHFfoGBgS6dw1q6xTHAzPTY88gjj5isy2mnnYYlS5aYn5mhcOdYXXvvry2+Vr6fzJA011ElZHJoUMmWiIiItBtH+3KaljNBXiFmv+6EfSUs0eJNPjMJzGCkpaWZbdZ+Bw8PjybPYfmWbYM2b8Ctz3GEJVp79uwxJWDM4PArISHBlDKtXLnS5etlf8i4ceMashHNcaqWFUuqGAAwiHFW5tVWSUlJ5r/Wxn9rQMYyuW+//RYDBw7E9u3bG14nv7idGZ69e/e67Trk0KOARERERNqN64xwtK8zR0dO6XbrkXC9DU6EYtN1amqqaWpn0zlZy7qYweCaHtagg6VKP//8symLYmkSp02xP8SZM88804zVveGGG0wvBUuXmJnhMdqSvWBw9OCDD5pJWq1hHwmDAJaisV/FXZjp4boonJy1fPly00B/1113mfKziRMnmt4Zlm1xO18n1zf5y1/+YiaK2ZaxiTTXvX47iIiIyEGH64ycFDOjRaaEmRE+3h3XIeGNdHR0tBlby4UPv//+e7MQom0G4KyzzjIZhjPOOMNMxOIN99SpU3HjjTeaKVkMWE4//XSn52FmhIEOJ2tdfvnlJivDY73++usNGQdXMeNw8803u7TvUUcdhUsvvdRMFfv666/hLgyKmE3ie8Cxxsx8sJmdGRkGbOxj2bx5s2l0v+aaa0wQw2CPo4hFHPGo1xw2ERERcYNDbaV2EekcCkhERERERKTL6GMLERERERHpMgpIRERERESkyyggERERERGRLqOAREREREREuowCEhERERER6TIKSEREREREpMsoIBERERERkS6jgERERERERLqMAhIRERERF3At6U8//RS5ubkdep4VK1Zg8ODBSE9Pd7jPxRdfjFtvvdV8/8knn5j9RQ5W3l19ASIiInKIqKsDMvcCZWVAYCAQFw94Hjqffa5cudIEAUuWLOnqS8Fzzz0HLy+vrr4MEbdQQCIiIiIHbudOYNlPQGlp42NBQcDRk4H+/XGoZEi6i/Dw8K6+BBG3OXQ+thAREZGuC0YWLWwajBB/5uPc3sFYsvTxxx/j0ksvxciRIzF58mQ8//zzTfb5/vvvMWvWLLP9pJNOwtNPP42qqqomx2D5U/Pj8jGWUV1yySXmsalTp5rH+MXj3H///Rg3bhyuvfZas33Hjh24+uqrMWnSJPP4DTfcgIyMjCblVg888ABuvvlmjBo1CscddxxefvnlFgHP0qVLccYZZ+CII47A6aefjh9++MFuyZbIwU4BiYiIiBxYmRYzI84s+9myXwd75JFHMHPmTHz11Ve46KKLTFkTy6zoxx9/xE033YQ5c+bgyy+/xLx58/DNN9/gb3/7m0vHHjNmjDkeffTRRzjttNPM96mpqcjKysJnn32GuXPnmsDj3HPPha+vL9566y28/vrryM7ONtdTUlLScLwPPvgAISEhJqjh81544QW88sorTc759ttv46677sIXX3yBvn37musvbR70iRwCFJCIdLF9BZVYvqXAfGUXWj6pS9lXhu/W5eLnTXnIL6nu6ksUEXGMPSOt3SSXllj262BnnXUWZsyYgd69e5sMRWhoKFavXm22/etf/zLByHnnnYc+ffqYDMq9996Lb7/91mnzuBUDjLCwMPN9ZGQk/P39G7YxM8JzDhw4EO+//z4CAwPx+OOPY8iQISYD8uyzz5pG+M8//7zhOf369cM999yDpKQkE0Qx48EAxDZLcvvtt5ssC/e97rrrUF5ebrIvIoca9ZCIdKKKqlqsTSlGTlEVwgJ9EB/pi3UpjZ+Y7c2vRFSIN3KLaxoey9qQh6kjI1FYVotd+8pQVFYDby8PDIgLRO+YAGxMLUZucTXCgrwxID4QRWW1CPTzREyoLzw8PLrolYrIYYMN7O7c7wDw5t4WMxDV1ZYPdTZt2oR169aZsi4r680/b/J79erV7vMye2G1detWU2LFAMYqJibGBBXcZsVAw/Z3NDMwzJDk5+c3PMbnWDG4ooqKinZfp0h3pYBExI1yi6tQWV1ngo20nHKUV9UhPsIPcRF+ZvvKbYXIKbb845hdVGW+Wh6jMRix+n59HupsSoura+uxPrUE2zPLzDmopKIWGbmVDfvERfjiyEHhCkpEpGNxmpY79zsAtkFA86Cjrq4OV1xxhclGNMeAwZ6ampa/j+2xzZY4anzn+X18fBp+9vb2brGdbCdnedqZUNadGutF3EUBiRzUmDFIza6Aj7cHBiUEITq05T9G7cFf+AwWqmrq0SPMFz7enq3u/8uWAuwraBlgpGSVIyLYG3Hhfg3BSFvZBiO2rMGIPZn5VcgpqkZMmHveExERuzjal9O0nJVtBQVb9utCLKfatWsXEhMTGx5jozrLpFg6xTIrBgy2fR67d+9ucgxXPuBhE/yCBQtMs7w1QMrJyTHHuuCCCxr2W79+fZPnsbSMWRprWZjI4UQBiRw0eNPPkqac4irkFlWjsLQGtvfpWYVVSIj0Q0FJNTw9PdA3NgD9egTCy7NtGYK6unr8nJxvbuaJwc6xwyJM1sMRXpe9YMQqv6TGfHW28qraTj+niBxm+Ck+R/tympYjRx/T5euRXHnllaYpnJO3OLEqMzMTd9xxhwkCrBmS0aNHm4b1CRMmmH9zHnrooSZZFwYtlJycjIiICLvnOf/8803DOpvlr7nmGhOYsNme+/O8VqtWrTK9JWeeeab5/r333sNtt93W4e+DSHekpnY5aKzYWmi+duwtR0GzYISYxWbJUmllHYrLa7F+dwkW/Z7T5pvyPQx69gcjVF1Tj+R05w2bZZVdc+MfGuB4USyGYew3+XJVFr5cmYVNaSVNUv3c9tv2QixLzkdqdnknXbGIHJK4zshJ0yyZkuaZET7eDdYhOeWUU/DUU09h8eLFmD59ugkYmo8GZqaEGQo2v19//fU455xzEBcX17B90KBBOP74401g8+GHH9o9DwOcd999F0VFRWba1uWXX24CHgYp1j4Q6+hg9q4wIGHDPYMRBjMihyOPehUjykGgoLTa9FG0Bxu9RySGuLz/1j2l2JjamLKnsEBvTBkZ5fA5ReU1+G5tbosgqSP1jvJDbT2wJ6+xb8RWWKCXaYS3NapvCGLDfZGaVW76T2ptKr6G9grCkF7BHX3ZInIoO8RXancXTtTq2bMnHn744a6+FJFuQSVb0q1U19SZCVImTPYA9uRWmD6R5jfWbcGJVizDYhmXK9jrsSm1pElwwVIwZ0IDvDFhYJgJZEodZEt8vDxMM7q79IsLxI8bG6exNGfvPduYVoK1KfavYXN6KUICvdEzsrE5U0SkTRh8JPTs6qsQkYOMAhLpFgpLq01TuG2TNuMHR83cbcHyrkVrc00fSKCf4xInq9BAS3CRnFGKquo69Ir2Nw3zrekZ5W8man27JsdM2rLy8gSmjoyCt5cntu0pRVZRlel/OdBSLQZB7K9sS46zppWAaENKEYL9vBAc4N3m3hsRERGR9lDJlnQL7HNgr0ZHSowNwNj+jfW7HYUN7uzNYDaE2R6ek8EK8a/b6h1FSM1xbY48QwJ778ofjohEeLAP1u4qws597u//YCP/+KSwhnHFIiIiIh1FAYl0KZZSrU0pQkqW6ws9+Xp7mHG8bRUV4oPjhkeiMzATUVJRg2B/bxOUWK1LKcaOTNcWB+Ozxg0INeN703Mb3x9mYY4cHG6+519fbuPCiPxio7ojPl5cv8T11+Dn44lTxkS7XOomIiIi0h4q2ZIutSWjtE3BCLUnGKEe4Z33aT+DkPAgnyZ9LOwvyStxbR0ShgCnj4+Gj7eX6emICPZBXkkVIoJ80D8usMlM/N7RAeZr9Y7CFgFJgK8nxiWFmixLVIgvtu0pweZ01wIilp2VVdWaoEpERESko+hOQ7pURp7rwYij8iW7mPizLmBVX4/4SD8MjO/4VYLtKa+sxc+b81vth+HaiwwwAvy8MD4p1AQjxAwFJ4UBzq+/d0wAMnIrULO/fSXQ1xMnjIgymQ4rrzZMu/H39XSp50ZERETkQCggkYMCQ4uYcF9kOVl8sOkTbMqMPDyQV1SBtJwK9I727/QSJDbru9KcP2lQOGLbkcWpqKo167Mw+8JG9IQIX/SI8EPPKD/4sKPehr1yscQYf+zObhoY8mkTBoTB04VViUVEREQOhAIS6fSxvlzng2tnWEbg2iyE0QqXgxE7Kms9sXpnETILKs2Nf2dhCVWhnb4OZkOS4oPA9pKaunrT9G5b4tUW63cXN5SC1dbVm4Udh/QOahGMkL2OsYRIf7MK/eb0EvNnEhnsg0mDwuDvq+xIm5WUAN7egL9GJ4uIiLhKAYl0quVbC5qsgu4q2/voto66tcVAaGdmKfr1CDTlUe5SV1+PlH3lprE8PMjbHJ99JAwQ7GH2Ic5N633wnM3lFVebIKM59p9wxXarYH8vxIb5wjPCA317BJjr9WW0JK4pLbX8z+jjAyxaCGRkWNZhGDYciI0FUlMBrsx8xAggIMDynNwcy6Jx8QmW4MWe9DTgt9+AygpgwEBgzNimWT8REZFDiAIS6TScOtWeYKQ53v8df0Qklm8paLLeh6vWppRgb34Vjh4S7rag5PedRQ1lT+m5QHZhFYb1CTaLOnKEru1I415Rfm4LRoiZlfKqpqu1O8q2DO4ZhEA/TzO5K8jfC0lxgQ0lbCz30tojTqSnAznZQI8eQEQk8NUXQE6OZRsDi5qaxpWqN6xv+tydO4GZM4H/fAwUFTU+Z8ZZQHQMUFUF7MkAgoMtwc03X1uOQyt/tZy7ugoIjwDGTwDCwlq/3tpaIDsbCAkBguyso8Pj791rWfCHq2lbI30FPiIi0sk09lc6TXlVLb5dvf8G7gDwdmna2GiUlNfgp80F7T4OAxJ3TN5iGdpXv2W3yNo0X9gxNNALvaL8MTA+yK19LKUVtfhlSz6Ky2vNvSQXcRzWO9htxz8s8A9v6xZLZiIsHBgxEvCz+X/jl2XAurWNPzMLYg0YXNWzpyWDYisqGjjueODrL4HKysbHmEVxhOVg/fpbgpehwxozL7aysyxBTXm5JcAYOw4YPhzYtMmS1enVC/htFZCXZ9k/JsZy3u3bLIESMzIjR7Xt9YlIC9XV1Xjvvfdw6aWXmp+fe+45fPrpp/juu+9wsFqxYgUuueQSLFmyBL34u6QLTJkyBTNnzsT111+PTz75BLfddhu2bNnSJdci7qEMiXSaAF8v9Ajzxb7C9veCEO/x/7smB+MGhGHKiEj8b3N+uxZVtF0V/oA4iC2aV2sVldViZ3U5QgN9zFoi7sJMB1eCL66ohZ+3Z5OpWuKiX1cAv69p/Hl3CjDrbEsGZEsysGlj0/3bGoxQfn7Lx/JygW+/bgxGyFkwQhUVwOZNlu8ZYIwcaQmWGHwkDQCOPQ746SfLz9Zgi8FH8mZLMELW51sxk8IvYqaHAVhklCVwEWkDfsZZlFuGqooa+Pp7IzTKveWxB5svv/wSDz30UENAIiL2KSCRTjWsdxCyiqoc9oDw3y22MLS2gB9v9rlK+ZSRUXaDEVcWAYwL93XpmrmGCBvHmYHoEe6L0f1Cm9z0s3k8MSYAKVmtr5heUV2HVdsLccrYaLtN5+3Ff/BDA/TXud02bmj6MwORr74EMtLdd47AQEvviC3+RbAGDu1RWmIJHqy2bQXKSoGsfXb23R+MuIrZIgUk0ga5e4qwa32mCUasGJT0GxGHqIRQHI5UhCLiGn2UKp2GDdO/bCl02pDOba6uJs4FErnGh70P3yYPjTCLAjrCgMKVKVLVtXWmV6WgtMYywSqvEqt3FrbYb3S/EBzRx06dvoNV3AtLHa+oLh0sZRew6L/AT/8DClv+WTZwZzBiDXLasA5MuzUvC6P2fEKtGylpYzCyZWV6k2CE+DMf5/aOtnTpUsyaNQujRo3CUUcdhVtvvRWF+/+Os8xo2LBhWLRoEaZNm4aRI0easqO9e/fi/vvvx/jx481zXnzxxSbH/Oyzz3DmmWea/Vkm9M9//hO17M/aj8//61//imOOOQajR4/G5ZdfjuTkZLPNWkpEgwcPNtdg9fLLL+O4444zx7344ouRkpLi8HVx+yOPPGLOM2bMGEyePBkffPABfvvtN8yYMcO83vPOO6/hGOnp6S3O1/yx3Nxc3HDDDZg0aZK5Bj7/119/bVJq9swzz+APf/iDOT7f159//tlh0PXKK69g6tSpZl9e04IFC5z+WZWWluK+++4zr4Wv6aKLLsKGDY0fDK1evRoXXnihubYTTjgB9957L0o4xVAOWd0/IMn4DUj+HCjN6uorkQPEyU/MELh7jQ+uZG6La42EB/siyMmifoMSXFskMbeoev944kb78qvsZigiQ+xnXDhtyxbbR0KUzega7BNZ+C2wc4clK/LZJ5YMRVvG9LIJ3ZHwcOc3/+0p9XKXtgYlLOvqyuuVgwZvSJkZcWbXhswOzRbk5eXhz3/+M2bPno2vv/4azz//PFauXIlHH320YR8GEgw4Hn/8cbz11lsmcODNs4+PDz766CNzU/7000839CK8+eabuOuuu3DuueeaG+wbb7wRr732Gh5++GGznTfI559/Pvbt22eO++9//xv+/v7m5jojIwOnnXYabr/9drPvTz/9ZG68idt4w82g5N1330V2djbuuOMOp6/vnXfewdChQ8118MafQdQ999xjjs9jZGVl4YknnnD5/eJzKysrzXO/+OIL9OvXD9deey3K9mdxH3jgAfN6/v73v5vtxx57LK6++mrs5ICOZp566ikTIPG94r4M9Hh89s44ctNNN+HHH3805WwM+nr37o3LLrvMBJD8c/njH/9ozsnXyz+vjRs3mu3KOB26uu9dUcZKYPMnjT+nLwf6nQgkTe3Kq5ID4OckY9FezJIE+HpgXFKoWYuD06WiQryxIbUYXs0CAXMN3lz/IxgD4oNc7s9w5bF9BZXYtqe0xWryrMqKCvHBPps1VBgwtdbnsTur3KwnEuTnaa5VK6a7ycaNLfsxGJy0pWzqpJOB8jJLJoK9GbY37QUFwIknA+vXAvvslE25TfP/01rBf8Q5ftg64csV1dWWvhJOFRNxwtoz4kxVeY3ZLyzatd+9bcWgoKqqCgkJCejZs6f5+te//tUkm0EMKkaMGGG+P/LII7F27Vrccsst5kOlq666ymRAtm3bhkGDBplP/Rlc8JN66tu3LwoKCvDYY4+Z7AJvvvPz800mJDIy0uzDoODEE080N+M8bgin3Jm5EY0fZDAA4k12MAdTACYQ4k29MwxGmH0hXhODBWZOmOGgU089FYsXL3b5/UpNTTWvkYEAgygGRNOnT4eXl5cJtD7++GMTYJxyyilm/7lz55pgoHmWggEMA7cnn3zSZDKoT58+Juhi8GZ972wxqGEwwu3MkBADmNDQUPN+8nFmnBgAWd936/vKLI71NcuhpfsFJIV7gJXP2d+2a7ECkoMYexy46J51ET93Ka2swxGJAegTE4DSihp8vz6vIathVngP84W3p4f5b58Yf3jb6d0oq6w1I2+bBwrMZAyID8T2vZZPjfjUEYmWf2CsNqcVIzmj5QroVFvHYKVpRiU1uwLD+wTDj40udmzJKG2yVgjLxE4aHa2RvO5g7z1kGRXXDNmzx7VjMKsyfQYwajSwZnXLLAKzJKdPB/7zkfOSMCsvL2DgIMu6JMza2Ov/aH69J00DVq5onJLliubBCM/LYzHwcMTeBC+RZloLRtq6X3vwhv2MM84wN7G8+ecNLW+QTzrppCb7JSYmNnwfGBhopkRZm+55Y26us6rKZFxycnIwbty4Js+fOHGiKWfiTfXWrVvNzbI1GLEeg2VG3OZIVFRUQzBCvBGv4IcjTvAm3ypg/99LBhO25+V1uYrZpL/97W9YuHCheY0MDPj++fn5mWvnsVh+Zevmm282/7UtBdu+fbvJtPzlL3+Bp01Jak1NjXkf+bqs76uV9b1hiZsVz2stb9u0aRN2797dkFGytWPHDgUkh6juFZCk/gJsdV53iPo6wKP7V5qJfZOHRWDJuhyUVrivFCQzv9KsiB4a6I2UrIomJVb8Lre4ygQGzDhwNfJjh0XAy5M9JJ6oq6vHr9sKkbV/8lff2ADTD2I7FYYBCJvWiytqEB3i2yRo+XVrPjLy2jY1jNe0cE0OggM4dczPZEBsj7krs7TFNLC07HIzKnjD7mKTFeoR4WsWV7QXXIkTI0YBmTalJbwp6J8ExMcDCxcCBXYmYTXHbMqCzyzjcRl8WNcisSoq5B0HcPYc4MellkZzZ/gJLidg8csVDIA4VevkaYC3j6X5Pr8NgYnteZt9etwCb5KYWRFxgo3r7tyvvfgp+nXXXWc+fV+2bJm54ebNNsuzrLybLUZqexNty1FpUN3+DyB4HGf7ND+PLWYh2opZleYcXbs9zTNFDNT+97//mS++V2+88YYpc5s/f77dczlifQ9Y6ta/f/8W2319W5YyO3tvrO8fszXWDIkt2+BPDi3d526mtgrY+kUrO3kqGDnI8VP+E0dGY9KgMPSM9Gv4wPpAJtWaiVspRWa19Fo7Ne8MRqx4M//Dhnz89/ccfLs6G7/taAxGiJOyMnKbLjJIDHbYq8LAgRmMhWuy8dWqrDYHI7bXVFhai617yrBkbY7J0PC4P2/OR0V1y3/k1uwqxm87ilBZU28CGi5syNHHv24tQG7RgY1RPqzwH8wzZ1hWUh83Hpg527LeCBccnHMucNYs/gva+nF4o87ShebBCK1YbploxV6V1oKR9tq7B5j/oSUQcXbzwG0JPYE+jZ8Ku4w3O64swCiHPY72bS3Y8A2wjADuKCy9evDBB81NMUfssj+DPy9fvtw0cLdVdHS0+WLjuK1Vq1aZG3ZmLNgkzkZy2+MzW8Dm7AEDBpifu2LksTWgsC2vsm2aZ+aCvRtpaWmmz4X9KCz3YoDzww8/mCwSj7F+fdMFXufMmWPKs2zx/WaAsWfPHvM86xcHDLD0yl7QlJSUZP5re3xmVDg04Ntvv8XAgQNN5sX2eNzOa+YQATk0dZ8MSfGe1muiJ17bWVcjHYif9CdE+psvTpziJCs2j6/c7kJ5iwNcAf637UVm8cXWcFqWNTjhiu3N5ZdWo1e0v8PeDttyKndgkLGCk7zKatr8vIy8SvM1PikUvWNcL69h1oiZJfamsNTtsCoHY2kUv5rjjQP7Jc48y7ImCVdlZ09IW7FM68MPnJdCHYAa1CMH1Yir8zU9LLXBwbgpbwVOqQvH6XXhZh+GrR4sWDR9IFnAlKlA6u62nYjBPddEYUAj4gRvujnal9O0HOl3RFyH3pyzBOr99983N9K8cWZgwOZ2llRFRES065js2WBvB0ujWAK2bt06k0Vgkzt7Q/gp/ksvvWQatJmNYTbghRdeMH0V3MdaFka2QUpHi42NNT00zAxZ+144Mcv6/vM6GQwwuGKfCAMvZpV43SyTYkkY+1T4HGYkGCCwp4SlVmzoZxO+Fd8H9sBwX/4ZjB071pR0sc+GPTn2sIH+5JNPNpOz2DvSo0cPE0Dyz4wlcXFxcab3hNt5HUVFReZ7ln/x9cihqfsEJIHRjhs1QxOBiS1Td3Lw4wQqby8vxIZ7tFjZvK1ri6TnOq/BdRX7XBzZm98ye+IObQ1GmtuYVtIkIOHaKRm5FfDx9jCr0UcE+TSsDs+gavXOoiY9LccNjzisFy9rguVWU08E1v4OLP+lfcfooGCE1nqUYZ5XOr6oGQSPrCwsrc/HIp8iLPIswvy6XPSu9wMLQu6t7dV4LYsXte9kXONk9jluvX45NHGdkcETerVchyTA2wQjHb0OCT915yroDBgYmPCTeTatszG9LaVNtjjViTfvvLFntoU3yldeeWVDczlvxjmlijfp1oUPWSLGiVPW/g5eg3UsL2/SOwN/l3O6GK+ZU8SYYWB/xp/+9KeGfRhoMeNwzTXXoLi42GQ62GjP8cfWfhGWls2bN89sHzJkiAkauJ9tQEI8NoM+BiWc9hUfH2+a/q+44gqH18hr4zVyyAAzNnyPmFFhAMSvV1991RyPq7EzqONIZk78slcCJocGj/ruNEMtdRmw9cvGoMTLDzj2NsDbfataS/fFm2j2c1TaGQ0cFuiN44+INGVWzGy0N/jhPbnt8/kzp2BlF1WbD8jZQzKqb9MeElvrUoqxI9N+A/uBaC0Yc+X5p42PMYstpudUtMg2sdVkYHwQhvQKwqK1uSitaBrZHTM0HLFh+nvWRHExMP/flpXLu5HvUYhrfHfjo+oBGFEfiNc8s/GYd9MyhkF1/lhQM+jAT8Za78uvPPDjyGFDK7WLyMGdIaE+RwNxo4CyHCAkHvBSJHw4iQ71xWnjYlBVU2dKubbuKUVuMUf5emNY72BTVnTUkAisTylGUXmNmZxlu64JV1FnORbLt5rz8QbOGB9rJnyx74KN4gxQGHywZKmiqtZkEHy5TLwTnLi1J6/CPN9dBsbzH2yYfpL2YjCzdEMeTjgiCtv3ltrtWUnOKEVhWTWq7AR8fL+lGY7r5DSt7xbbn5bFxtTWmsKJf7iDBltG6Oa5UMveynErPCx/fqH1lsbYyfXBeLweqLe55zuuvukkuHazmewj4goGHx012ldEDl3dK0Mi0gYMPnbsLTNBRkSwN5Ligkzt/M7MchSWVpsm94qqOoQH++CIPsENE6nMLPWKWgT4erVYtNDV83L1dttm+PZmQMYmhZoJXsRAZ3NaCYrKa+3e07r6N7WNK1TA38cTJ4/RWGGH2Jj+3ZK2P4+148edAERGACH7y1WqqiyZFzbD//iD/YUHg0OAkmKHh13tUYoPPHPxWG1jsPC5Zz6e8cpEnlc9zkiaiDu3lsPfWX2jla8fUOWgDLFnT2DqSRr9KyIiHU4BiUgr+FeEWZfSyhpT1sRGcD7G3oute0pQ0soIY2ZAkuIC8e2alhOZpo6MMk39u7MrTFkVMzTJ6U0zHBFB3ogMsazfkl/i3vKh2DAfjO4XiqAOHsd5UGPQwIBkx/a2Pa9XL8t6JPYwMHnrjZYBCeujWSa1f7Vkexh085e2pwk9m2Hvy4CBwEsvot24ZsC0U4G4uPYfQ0REpA10FyLSipXbCs0kK/LwKMakQeGIj/BDYiwXY/Q343jZt8GbRCZcWlQ/eVgmi7EPptCmeZ2laOyX4ahf26fw8YJSy348Xn5pjfkiZnrCgryxIrkA7WylaSKvuKbJWGSxgw2xJ54E1FQDu9swqSrUychc9qXYy44wUOGXE5ye5TCXtX07EBEJhIUDhc0mhHEUaGvN9lxXhaOQ1TgqIiKdSIt6iDiRV1zdEIwQ84m2Y39ZLz1+QBimT4zFtDHRpjysuV2ZZWYhRGswwkxIYqw/jhocjp37ylqUVzEYmTgwDMN7B7cIbjILKk2WxrMdpWb21NTVIzndvWOMD1lTTgSOGGHJYLiibz/n5VwsiXK33SnAx/O5eljTUqvEvsCppwGtjT9lbaCCERER6WQKSEScsLeuSXlly8fYf8FFFdmE31xNXePaJ8SMRGSwL/x9Ha/Wu6+gEl52gg72vixcnX1AE7ma46KM4gLeqB8zGbjwYsvCihwPzJXSHSlrOVygiRNPBoYfYVmYsa1aWz19105L2dX5FwJDh1rWVPnlF0tgcsIUxwvM2mveFxER6WAq2RJxIjbMFz5eHqi2SVUkRLVcNLGurh7b97o+JauojIFLAPr34NSulk3FPt6eZiV7NrnbnptN+u4eGxwfaX8RSHHSY3HscZbv2euxcYOl8Z3N6rbi4p2v9F5fB0w+FggKAn5d4fycLMPiuSr3r7VT1LiOjEMs2dqaDGzebPmZq8dzkURzvIj9x2v2/15vTdUSEZHOp4BExAkGBkcPicDGtGKzdkdchB+O6NNypCpjgbbMh9i1r9w0u8eE+WLiwFCs2l7UEFD4enugf48Ak0E5bngktu0tRVlFrcm+ODrD4J5BJnBhZqXYzpQuR3iugQmWlYSlHVh6NWEiMGyYZfHBzExLxmPikUBYsx6SnTuB7duAgnwgP9/yWL9+wDHHAps2OZ2shfy8tl9bz16OF3bk+dkAzxKt1astwQsXcjvu+LafR0RE5ABpypaIG5vf27JafGiAF6aOijbfcx2UtBzLc3tH+7co5+LK6lxh3RFO4jphRJRZY8W256U1CZF+pklf3ISZDzaPcy0RW8mbgaU/2H/OmLGWscAcA+wuDDRYVsYAKbfldLcmk8BYvsVrHjkS6KHJWiIi0vmUIRFxk3FJoWYtEVdLp2zXG2EAEuTvhezCKlPCxQle1TV1yCyoMuuElFU4H/fr5+uF/JKmDfiuBiTi5nIuezZtdPycdeuAOjf38fBzJpaSMXPDjIyjhRbT05s2xM8+21IeJiIi0okUkIi4CUf7Bvh5mdKutmKvCFdSt+L0rbLKuoZm+ABfx/Mn2FA/pGdQm5vTWa4VH6H+kU7hqImcat27tkwTKSnA9DOBvDwgLc3S7O7wOmqBrVuBSUd23PWIiIjYoSlbIm7UNzagxU3/5GHhiAltOY0p2N9S1sOqSfaJ2GIfiO1krnIHzezEEcERwT7wdxK02DOsN1ev1+rsnYLlUF2BjetLlgCDBjc2xDvD0i0REZFOpoBExI3YqD66X4hpVu8T7W+a0mNC/UxjPBc8tDWyr6U5nmGHvTXyXOHn42mOuyw5Hz9u3N8o7aK9bSzvkgOQNMCy6KAjzUf/+gdY+kDcobgI2JIM7NnjfD+uWzJ4iHvOKSIi0gYq2RJxIy6U2K9HoPlqXs7F4IQ9Jsx2cKX3kADLXz9PDw9EhPiYRRjbgoHIqL6h2JBagn0Fzlf3tqeSC6RI5wkIBAqarZ5u1Xz8Lhc23JPhvnOnurDCPHtHlCEREZEuoAyJSCdhr0fv6AAMSghqCEasxg8INWuJNF8DJcjPq0VZFbMiZ06MxR9GRCEyxAeZ+e3LdHCal3SiUaNcz3q4Mxih3btbTv6yd87f17j3vCIiIi7Q2F+RbqKgtBpbM0pN5qJXlH9DloUjgdemFJsJXKGB3hiRGGJ6Rqx+WJ+L/NKWjdGJMf6mF8XbG0hg83o9sCe/ElU1dSYYSYoLNBkd6URcmHD5cvcHHK7qnwSkpwFVVY7XLjljemdflYiIHOYUkIgc5HKKqvDLlgLU7F/RPdDPE2P6hyI2TCN9uyVOs+KaI9u2WcbztsbTs/1NRvbWPFmz2vH20WM0ZUtERDqdAhKRQwDXLMkuqjIlXmFB6gM4aBZRLCoCfv4fkJVlKamyt16Io8cdCQ0FiotdC3aamzkbiI1t+/NEREQOgAISEZGuVl1taSjPyQG+WwLk5zUutMgAgwFLR+Okr4suganxExER6UQKSEREuhNmQ9JSLUFKn0SgpAT45iugtNTSFD9qtPtXd+dxTzzJ0mMiIiLSyRSQiIgcDEFKTjYQFAwEBwPvvm0JUNrLtgyM359yGtCrl9suV0REpC0UkIiIHGzWrQV+Wda+54aEACeeDJSVAmXlQGIiEBTk7isUERFxmQISEZGDEVdf37kTCAwEUlMtAYY9zKhQWDgwbDjQv3+nXqaIiEhrFJCIiBwqo4TT0hqna3Hl9cnHWlZ9FxER6cYUkIiIiIiISJfx7LpTi4iIiIjI4U4BiYiIiIiIdBkFJCIiIiIi0mUUkIiIiIiISJdRQCIiIiIiIl1GAYmIiIiIiHQZBSQiIiIiItJlFJCIiIiIiEiXUUAiIiIiIiJdRgGJiIiIiIh0GQUkIiIiIiLSZRSQiIiIiIhIl1FAIiIiIiIiXUYBiYiIiIiIdBkFJCIiIiIi0mUUkIiIiIiISJdRQCIiIiIiIl1GAYmIiIiIiHQZBSQiIiIiItJlFJCIiIiIiEiXUUAiIiIiIiJdRgGJiIiIiIh0GQUkIiIiIiKCrvL/I+Jhldbd2f4AAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Generate UMAP visualizations\n",
"plot_umap(model_output, dataset.labels, \"UMAP: scVI Embedding\")\n",
"plot_umap(clustering_baseline, dataset.labels, \"UMAP: PCA Baseline\")"
]
},
{
"cell_type": "markdown",
"id": "23b2449b",
"metadata": {},
"source": [
"#### Visualize Clustering Results"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "015c481b",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAHkCAYAAADFDYeOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXlVJREFUeJzt3QncTPX///+XfckWJSIiISpUlBBtKiklFaWd0qZUSEmSKGsoStEmqSytKm20WqJFCeljzZYI2Zfrf3u+v/8zv7nmmrnW92Wuua7H/XabG9eZMzPnnDlzznm9X6/3++RLSkpKMgAAAAAAkCX5s/ZyAAAAAAAgBNgAAAAAAHhAgA0AAAAAgAcE2AAAAAAAeECADQAAAACABwTYAAAAAAB4QIANAAAAAIAHBNgAAAAAAHhAgA0AAAAAgAcE2ADi6ssvv7SuXbvaOeecYyeeeKKdfvrpdsstt9hnn32WYt4HH3zQatWqZStXrszWZTpw4ICtXr3a+/tqHc866yyLhzlz5rhtF/moU6eO2+YdO3a0d955J1s++7///rP777/fTjvtNKtXr571798/Wz4Hfv38889uH2nfvn2a83bq1MnNu2zZsmS/Ve13qVmzZk1oX7z88stTnXfUqFGheX0fA/S71O8zMw7VcSlev/3ff//d+vbtaxdeeKHVr1/fGjRoYFdeeaW98sortnfv3lQ/+9lnn3Wfpe2r42p6RVtenR+aNWtm3bp1sz/++MNykuuuu84t4/79+93fU6dOdX+//fbb8V40AHFQMB4fCgAKuh566CH75JNP7IQTTrC2bdvaUUcdZevXr3cXe3feeafdcMMNbp5DSYF1ly5d3MXk3Xff7fW9tS5JSUkWTwpyr7rqqtDfWp5///3XXRD27NnTVqxYYffee6/Xz3zmmWfsgw8+cNu0adOmdvzxx3t9f2QPNYbou/rxxx/d7+KYY46JOt/GjRvtu+++c4FXjRo1Mv15ixYtslWrVlmVKlWiPj99+vRMvzcy99tXgKxH2bJl7dJLL3Xfzfbt213D6IABA9zx+4UXXrDDDjssxefp/adNm2bFixe3DRs2uNecd9556V7eww8/3Hr16hX6e8+ePa5BZvLkyTZz5kx78803rWbNmpYTNWzY0AYNGuR+EwDyHgJsAHHx8MMPu4szZTZvvfXWZM/ddtttbpoyJFWrVrVrr732kC2XAokgC+dbRi4us4uCpDZt2qSY3q5dO7v44ovdxbIyWkcccYS3z1QGTJS5LlmypLf3RfbTfjFw4EDXQHL77bdHnee9995z2UnNm1n6nSsD/PHHH6c4HsjixYvtf//7n5UrV87++eefTH9OXpbR3/7rr79uI0eOtHPPPdeGDx9uRYoUCb2mc+fO9vTTT9uYMWNcw+GIESOiZs51PFVDpYL0N954I0PHQAXm0Zb3/PPPd8s8evRotww5dVvHapACkPtRIg7gkPvmm2/chXTLli2jXkwXLlzYZUcKFixor732WtyzvnlBiRIl3MWvShyVsfQpKCMluE48yloWKlTI3n///ZjzvPvuuy6D2apVq0x/zsknn2yVKlVyx4VoPvzwQytdurQ1btw405+B9P/2t23b5jKw5cuXTxFcB+655x6rVq2aff755/bXX3+leH7KlCnuX+0Xyp5/++23XrrenHTSSVamTBlbunRplt8LALIDATaAQy7o76d+a7EcffTRLjOmC/t8+fKl2rdQF4CROnTo4J6LLDFVf9JGjRq5voTKjowfP94OHjwY6uN50003hcqa9XqVJAa0LCqxDPohKrP+xRdfJPuMoO+dll1ZFvUbvOCCC2zXrl0p+mAHfUrVn7BPnz7WpEkTd/GooCZan8g///zT9Vc/44wz3Ocri6Rp6kupfqBZlT///50Sgn6EQVmmsk8q7w76yGsZIi9u9fla9lmzZtnZZ5/t/q9ycK3fggUL3DxBX8qAugP07t3bbRO9t/7V35oeTvuJPl8X7GeeeaYrXdbFf/D9K7uq70vbV597ySWX2IwZM9x6KMOm6XqN+vh+9dVXyd5bjTdvvfWWXXPNNS4IqFu3rlvu++67L1mf2qCv8NixY11pauvWrUPr2K9fP9flIfJ9Nd8VV1zhvisFhqrMWLhwYbL50rt9g89PTz9h7WvKOus9FbjqPfXZ8+fPTzHv999/7/pPa55TTz3V7d/hpdgqDdZnaj9TCXek3377zS2rMqDKOGaFfid6v2hB2EcffeQa5BTsR6Pf29VXX+1+m3ro/wr8o22bwYMHu31U20bfj7ZBNOn9btJDXV5q164dNRB96qmn3Hf766+/ur+1ndVNRf2N9bnKIKv6Q+Xc2SXyt6/qot27d7vtGC24Fh2XlfWePXu2axwJp9+DfoM6jlevXt0uuugi95uYNGlSlpd169at7v1V9RD5mcpo6/evfUDbTg0HTz75pO3YsSND54KAGhr0/eg70Pvp966y9bVr16a6jNH6YOtvHee1XbTfBb/NHj16uG4Wkb7++mu7/vrr7ZRTTnHHL3Wj0vsCyPkoEQdwyP3yyy8uO60Lm9Qcd9xx3j5TFzUKmhTEqp+hLg6VLdPFk0pOu3fv7koPlW1VEKX/66EAQ3RR/uKLL7rX63108a2smspmdcF14403Jvu8Rx99NFTKqAu/YsWKxVw2BT/KFOlffb5K49UnUtMUUIoCHF0Q6gJYAafKOLX8CgwjLwozQ++rQEPbRReSomW5+eab7aeffnIXoFpH9aXURbICMV2Q6uIv/D0eeOABV2aqDNORRx5p+/btc6Wc6t+poDig9VEDhbaN3kt9fZcsWeL6VyojNnHiRJcdC6xbt869XgPgifadoLJhyJAhbvvqYlSfp4t+DYSkbafXhU+/6667XLAWBARPPPGEq5LQd6XvVe+pQFQX4Mrmab8JD+q07rpY13avWLGiC0RUSqsLcS1HeBcINQgoaFemT58/YcIE993p8xScZ2T7aj/U+kfr6xpJ66FsobavgptNmza5ZdSYBtq+CvRE/WO17yoI0nPKECtQ1bZTMKd1FO3DWk81MKkxJ5zeQzToVVYp06l11vcTXtmi44WC7scffzxq0Kzp2rZqHNH3K2p0UeCiBg012ojK2NWApu9VDSTatgpq1VCl/V77ayCj+35aFFBp4EZtQwXPAS2TpgWDeGk99V1oWbSsqvrQYHNaP20HNdrEanD0+dvXZ4oaXVITqwxa218BugJrUSOFfmsKEPV7UJVSWnRc27x5c7Ll1PZR2bp+k8F3HTyn37kaP3Sc1P/1O9W+9NJLL7kAdtiwYek+FwSBvN5LwbT2b40voEY37QPqT67vIjLIT0/1lr5vva8aL9Q4oX1a66US+oB+r9qvdZzQeqoBRMdF/V7V5UbHFwA5WBIAHGL16tVLOvPMMzP8up49eybVrFkzacWKFe7v2bNnu7+HDRuWYt727du75wK33nprUv369ZMOHDgQmrZ///6ka6+9Num2224LTfv222/d60aOHBma9vPPP7tpffv2TfYZe/fuTbruuuuS6tatm7Ru3To3bcqUKW5evW+ks88+O6lZs2ahv/UZmvfmm29OOnjwYGj6nDlz3PT77rsv2fLXqlXLLUv48nfq1MnNq22TmmBbdevWLemff/4JPTZu3Ji0YMGCpLvvvts936NHj9Brxo4d66ZNnz492XvpNaeffnpSq1atUnw3Tz/9dJrfhVx//fVu2nfffZds+qxZs9z0jh07hqbp/5r29ttvR12nxo0bJ23bti00/aWXXnLTta137NgRmv7aa6+56W+99Zb7e/PmzUl16tRJ9v0Hunbt6ub95Zdf3N+rV692f5944olJq1atCs2n/em8885z+8DOnTvdtLlz54a+v/DvdeXKle7z7rjjjgxv3/TSd6r3fPTRR5NN13fcsmXL0LpruzRo0MBN2759e2i+PXv2JF100UVum+7bty+0js2bN09q2rRpst+P9v8zzjgjqXXr1imWI9gf9B2lJtiu999/v/v73HPPTbr88suTzTNw4MCkJk2auP098hgwb94897f2Jy1P+HroN6jn9HuSyZMnu79HjRqV7P0nTJjgpuv3mZV9P1imaLTsWocLL7ww2fSZM2e617788svu7xdffNH9Hf47lwEDBrjtsn79+qSMysxvv3Pnzm7asmXLkjKjXbt27vW//vpraJqOc5r2/vvvp/l6zZfaQ7/xcJ999pmbPm7cuGTTtU/oOKBjf0bPBfoN6feqbRRu6dKl7jigY2/kMSr4zQTngeD3Fr5O8+fPT/Z+wWuXL1/u/ta5RMcTLUv48UP/7969e9T9A0DOQgYbwCFXoECBDN2yxYcKFSrYzp07XRZFpXbKxGk5lBlKi7IxQYYtPKMSTFOpsjIaKksPqIw7vVTSGJ6VCrJIyjyKRu1V5kMZF5UVBrT8yqBHlj2nRll3PSIpA6zsapC9CeYtVaqUK2MMX299rsq5lXlRJjq80iDIuKdG76VtpvLMyD61el9Nnzt3rssmaVCrtN5bpbTh/buVtZUWLVokK1sOsk3KRAajFP/www8p9kVlo4OKg8jSb5V7h2ftlFnSKPga/VpZX71O2V5RBjL8e9UIzMogB+uUme2bnv602hZaBmV0tQ2UDdVyB8slynArw6fsmF4TUGZRZfXBcgTreNlll7np+t6C70z7nZY71uBnmaGMpypIglHLVVGgLKQyoMHyhNNzQQl2eKWB1kODaymTqWoE7VPKIOv7iOyaokxiZDcT39+NXqdtqCoKZdWVmRS9j5Zb3UJEVRGi5VFmXRUQWpfw0bQzKyO//WBbZ6Y6Rl1elG0/9thj3T4YUNWAjmPK1Or/aVGVjiqHAqoCUSZa20xdINRtIqhOUAm39s3Ibgo6hqoyQ795rYv25fScC4L9TscSHTfC9wH9flVBE/yG0lNVEqhcuXKKygcd73W807Jqm+l3qnXVb2HLli3J5lVXDK2/svDh5wIAOQsBNoBDTrfjWr58uSvDTE+poA+62FZpnS6i9FDJrYJg9dFT30+VrMeiZRWVPscS2bcyI6NwR84bbJPg4lbBm0ogw0umAxm9LZL6EAZl1qL11gWoLiQj+7dqvVXmmdrAUlrv8CAjPCCORRfGuoCNdbsuTdcFp+YLf79Y2zRyevBdRk4PgobwQfPUv1T96FV+qTJ2rY8uxoPAOHKAvfAy4sjvKwjUg377QaAfTsF4VrZvWrQs6nOqgCwIPnQrI33vasgJSryDfs7RljFa2atKnJ977jlX3hosr8YJ0OcFwaEParBSgB2UiatcX33yYw2gpt9GrN9BsH8F34fWWV0XtL9H7i8KbMKDqOz4brQNFWArQFKArcYbBf3q467GHtGxSPOplFq3PitatKgr027evLkL0COXPbt++zpGy99//53h2+oFg5upQSx8DAvt+/pMNWrpTg1pHbv024zWqKagWN0X1NVC5ftBY4X2RfV5njdvntsv9Nkq8w5+y0GAnZ5zgfYFNZjpkdo+oH0zI/tAeo4fwflGXRxiidaXH0DOQYANIC73CFX2R4NfpZbp1YAwyhDoVl7qJ5oRkVlJBVsazErZIw3Epb5vn376qctuKRuhC61YAygFga4G0oqVrQgyT4Fo2ba0BhiKRdkMibZ8ugDPCF3gpSfLHKy3Mi7qCxhL0J83I+ud1qjwwXcX2fgSazvFahxJq6+qGngUcCiY10W6sm0K5BSEah95/vnnM/ye4d9XWvNmZvumhwIFVTtokCRlDJXZU59h9UXVLZWU1Q0Gs0pvf15lk5XNVeasb9++LgOoqg0FJApafVEQpmA3uF1X0F8+1v2EU9uXgt9t+H6ksRNSmzc7vxs1kClYVhZZgwJq3bQ8CqjDfz+6g8Idd9zhtq+CbAWMypZqf1T/31j3Cff521fGX5lmBcOpvUbHVB1H1V9dgaj2ffXjF42joEc0Wo+gASijtI30O1X/eDXA6LerxhONOaDAWMuuh4JwHds1HobWIyPngmB/0H6nge1iUTY8I9Lzews+W7+zWH28g7FBAORMBNgADjmVB+oCSxcysQJslQIqi6PyRZXyRRMEc8FtoMIF5dXBRbjKFpWRUlldMHCMMkgqi1QGU4GIRhaORhfawQVq5MBsGvRG9+fN6gjKqdFFli7MgsxGOH12dtF6K5urBpHI4F6NIxqROaMBvgQl1vpOolF2S+sbZNGyiwIcBdcKsiOzRcHgXZkR7C/6viIHBdMoxyr5V3CRHdtX+7QGi9N7a9RtPUQZOwXWGhVb/4Yvo7Kj4RQAKjhXpi98dGgNdqZgREGJAhkFU1m593UsKo1VObqykAq0lbmNFZgEwab2GQVV4YL9K2ic0+9I07TNw/ctNego2xleKp9d+76CaTVyqNFDgaiWQ10cwjOTWm8Fqyrb1kONIcp8a99R0KsBELObyuDV1UDZaJWqRxukUdtNg3HpHuUq0ZeZM2e6rh0qe47WdUADhul4riy+Gk5TG/wxNUHDStDopuoKfV+qfojcn5WFz+i5QOuvY7oy2NEaGNTgoc+ONcJ6VgS/TXVRiPxsnRdVfs89toGcjdt0ATjkdNGqUZuVNdCFYyRd7ChroAt4XbjFupANLpJ1a59wyviEl9Dp4lwXUbrgU3AT0AW1ymcj+5tGZrTU/zO4rVb4Lay0fCrF1ajAQb/e7KDyUV1w68IvPCjVxaIyk9lF2UlVEER+R1pXbUtdIKeVfY+VfQn6WUfeIknrqGyTns/uLE3QvzHYB8IbTYL+yuHfd3pp35ZXX3012XRl2ZRFVgClfTI7tq+Ca2XuNHJ7OJX5KmAKsv3KcCuAUCZP2eiAGquUKVXpcmQ5q4J1XfQri63AV8FtRsYaSK9g5GllctVQllp/XW1DUcNB5G8z2AbBPEGZeeS2Ub94lRIfin1f66YqGAWmOk7p1nHh76OGBY1YHoziLfrOgv62GamMyQodG3UMVgm0Gp8iM/86PqoftIJrlbgHDY9BebjGH1AlReRDjTuqFNE4B8HYFhml7zm4faP249R+y/odB7fbU4NAes8Femh51QAVOXK91ll3fFBDQWpdizJLvzPtE2o0UENOOHX/0DkxuKUbgJyJDDaAuNDFsy5qdWuj4B63CqjUD1Z9O5UF0eBDumVNLGrFV8mlskG63YoutnRBpNunqBwzPOOrixJdKOo91YdPfQ+V1VOAoSxjkCkI+u2qT64yXwqWFNwqU6cLcd2iRwPNqOxUGShlExTQZPeAMwrkdWsXPdQXXMGPljG4x7TvW/eIMlcqUx0xYoTbVgqmdGGs6oPgtlSZyeKJyja13fQZ+k7UH1ONB/o+VHKs57ObModDhw51F61qkNFt0bQMChKCYC38IjwjfV3VL1lZcAUoGoBJQazKZXVBHtyzPCPbV69Xg5SCM134x6IBlLQvB++hhgoFFvqNaR2D7Kf2f2VSH3nkERfkKbOqgFv7tIJ0DS4VWaKvbJ36cev3qYBLGe7s2O90yyr1a9W2Uf/g8H7rkVS2rv1Hv/ngtykK3nQ/ae1jatALAmwFZto2ymrqeKHvW7/ryDL37Nr3tY0VZOszRceicAquVaqs8nj91oNMuvYdNZBoHQNqBFEjgI5R2VFBo+OMMvu6baA+Q/u0GlWURVUji/YT3Z9ZgbZom6ryQcfQoHIiGq2jssXalqnd3k37fHhwqwZFVU5omoJclYQH/Z/1G9PxUNtN76l9Vw0Y2pb6npSx1vem42Z6zwW65aDeQ79XVW5oXXXbPy23AvDsOkapi4R+W9r3VL2h36catrR+QaVVatsXQPwRYAOIC10wjBs3zl0AKRBR6aOCagUQupDRxVNkqV80ughRkKTSRJX36eJc9ztVGWt4gK3BcPTeuljU5ypwUr9plWAqmxFkIhTo6QJQQZYyFLrAVYDdv39/l6XRhbwy2brA0oWQpmdHmWwkZVd0ka110+A+uthUcKHRhrX8sfqPZ4W2lz5TZZfKWCrg0PemgEf3jM1K9lLbWV0AlHlUlknbVRe/2pZan+wuDxddnGvddF/doBJA+4QCC1Ut6OJWAUMQtGWEto/KTzXoku5frYt4NQbpHsDBwGIZ2b4KLBQUqGQ7tQBbAa/2z+B+0vpdBP2FFRQqQA4oENF2VpZWmVPt05pP93sPL1sOp+9H2VfNqwv/7KJgWOsRa3CzcP369XMNXAp89F0G6xG5vto2GkdB66t9T9+tfsMqvdYxIbwKJTv3/aCxToF/ZB9b/S60ffV9BA2NCv51DFJgGN7/Wo2UajRR4JUdAbayqGqEUUCnbavfqYJrTdfxSGNkKEgNjp06jqthSuuX2uCVamDQd6MsrB7BXRMiKSsd3nVDn6tGBlVj6Lgb3ndd/1cQrW2n99b3p22lfUPZdi2rvm8F1Ok9F+i3ofOAvgudW9Q4o2oiNVppvsjuHz6pD772BVXBaB/UOqhBWdtDy3moKhkAZE4+3asrk68FABwiyg4pMxSZMVQGW7cHU9mjsh4AAACIH/pgA0ACUN9FZVUjR0cPRuyNHHwNAAAAhx4l4gCQAFQCqX6x6pOuEkuVS6rvucqAVcKpfr8AAACIL0rEASBBaHAf9VXXrbk02rP65Kk/ofqMZ8dotgAAAMgYAmwAAAAAADygDzYAAAAAAB4QYAMAAAAA4EGe7rT3448/unvJZsf9YwEAAAAAiW/fvn3uVqkNGjRIc948HWAruKYLOgAAAAAglozEjHk6wA4y1yeddFK8FwUAAAAAkAMtXLgw3fPSBxsAAAAAAA8IsAEAAAAA8IAAGwAAAAAADwiwAQAAAADwgAAbAAAAAAAP8vQo4hlx4MABd/8zILMj1hcoUCDeiwEAAAAgGxFgp+OeZ+vXr7d///033ouCBFemTBmrUKGCu0k9AAAAgNyHADsNQXBdvnx5K168OMERMtVIs3PnTtu4caP7u2LFivFeJAAAAADZgAA7jbLwILguV65cvBcHCaxYsWLuXwXZ2p8oFwcAAAByHwY5S0XQ51qZayCrgv2IvvwAAABA7kSAnQ6UhcMH9iMAAAAgdyPABgAAAADAA/pg5xFLly61MWPG2Ny5c23r1q1uROvTTjvNunTpYrVr14734gEAAABAwiODnQf88ccfdvXVV7sB23r37m3jx4+3Hj162Nq1a+2qq66yn376Kd6LCAAAAAAJjwx2HvDSSy/Z4Ycfbi+88IIVLPj/vvLzzjvPLrzwQhs9erSNHTs2rssIAAAAAImODHYesGnTJncv5oMHD6YY1fqhhx6yiy66KDRt+vTp1rZtW2vQoIE1adLE+vTp40rKAw8++KCdc845yd5nzZo1VqtWLZs6dar7e86cOe7vSZMm2dlnn22nnHKKffvtt+65WbNmWfv27a1+/frWtGlT9/7btm0LvZey6vfdd581atTI6tWrZzfccIMtWrQo27YNAAAAAPhCBjsPaNGiRSiwveKKK+yMM86w6tWru1GtlcEOKJM9cuRIu+aaa6xbt262evVqGzFihCshf+utt6xo0aIZ+txnnnnGlaTv3r3bBexffvml3X777Xbuuefa008/7UrWBw0aZH/99ZeNGzfONm/e7JZR94x+5JFH3L+vvPKKXXvttTZ58mQ77rjjsmHrAAAAAIAfBNh5gALmv//+2wWx/fr1c9NUMq4M8vXXX28nn3yyy1JrEDT1yVZWOVCzZk0X4E6ZMsX9m9HPDQ/gR40aZSeccIILvINbVhUuXNgF8cqyv/baay7ofuONN6xSpUru+bPOOstatWrl5lHwDwBALAcOHrQC+SnOQ+7Cfg0kFgLsPOKee+6xG2+80b7++mv7/vvvXRn3+++/bx988IErE69atart3bvXWrdunex1Gmlcwa5GH89ogK1gOqAstkq977777mT3g1bwrIdoufSao446yvbv3++m5c+f3wXZ7733Xha3AAAgt1MQ0m/cNFu5blO8FwXwomrFI6zPLZfHezEAZAABdh5SunRpF0AHQbQC3u7du9vgwYPtiSeecNOOOOKIFK/TtO3bt2f489THO6AMufqBlytXLub8yl6vXLnS6tatG/X5Xbt2ubJxAABiUXC9dPX6eC8GACCPIsDO5TZs2OD6XSuDfeWVVyZ7rk6dOq6v9Z133mmrVq1y01Sqrf7Z4VRefswxx7j/K/t84MCBZM/v3LkzzeUoUaKEe636WYfbs2ePzZ492w1oVrJkSTe4mW4hFo3KyQEAAAAgp6JDRy6n7LNuzTVx4kQXzEb63//+Z0WKFHHl3wpgVTIe7ocffnAje2skcDnssMNsy5Ytyd5r/vz5aS6HXqfybw10Fu6rr76yW2+91TZu3OiC6+XLl1u1atXspJNOCj3effddN8hZgQIFsrAlAAAAACB7kcHO5RSU9u3b12WplclWIK3RuFVurVtnvf766y67rUHPFOg+++yzVqhQIXd7Ld1+S4OL1ahRwy6//P/6/2i6BiN7+OGHrV27drZ06VJ3n+30BL9du3Z1o4jrNlyXXXaZy5YPGzbM3Y9bg6mpj7iCaf178803u2XSbcM0gnmvXr0OwdYCAAAAgMwjwM4jt+lSkKpRxJ977jlXpq1stUrEhw8fbi1btnTzaQAyZbwnTJhgb775ppUpU8aNAn7vvfeG+lPr3tg9e/Z0QfYnn3zi+ktrVHDdXistCs71+ZpfAX/ZsmXtkksucZ8rGtxM984eOnSoaxRQlvzYY491/cMVzAMAAABATpYvSSNP5VELFy50/6oMORqNfB2ULGf0HtBAJPYnAMh+t/R/gUHOkGvUPKaCjevdOd6LAeR5C9OIG8PRBxsAAAAAAA8IsAEAAAAA8IAAGwAAAAAADwiwAQAAAADwgAAbAAAAAAAPCLABAAAAAPCAABsAAAAAAA8IsAEAAIAcqGypw+xA0sF4Lwbg3YFcvF8XjPcCAAAAAEipRPGiViBffnvy+zdt1baN8V4cwIsqpcrbg42vttyKABsAAADIwRRcL9uyNt6LASAdKBHPpAMHD+aJz502bZrVqlXLlixZEvX5+fPnu+cXLFhga9ascf+fM2dOzPfT83rMmDEj6vO33HKLe37q1KlZWu6MvoePzwQAAACQt5HBzqQC+fNbv3HTbOW6TYfsM6tWPML63HK5HUoXXnih9e/f395//30XhEZ655137LjjjrNTTjnFBdjpUahQIfvkk0+sZcuWyaZv2bIl1eAcAAAAAHIyAuwsUHC9dPV6y82KFStmrVq1sg8//NDuv/9+y5cvX+i5PXv22Mcff2y33357ht6zcePG9uWXX7rXFylSJDRdWe369evbvHnzvK4DAAAAABwKlIjnEbNmzbK2bdtavXr1XID74IMP2tatW0PPr1y50gXKp556qp1++ul233332T///OOea9euna1du9Z++OGHZO/5+eef265du+yyyy7L0LK0aNHCDh48aF9//XWy6dOnT3fBfKSZM2faVVddZQ0aNLCmTZvawIEDbffu3aHn169f75Zdz5911lku2x5JAb3W/+STT7bzzz/fnn76adu7d2+GlhsAAAAAUkOAnQds3rzZ7rrrLrviiitcEPvMM8+4LPGgQYPc89u2bbNrr73WBZyvvPKKvfTSS7Zq1Sq799573fMKyo8//vgUgavKw8855xwrW7ZshrPiCrI/+uij0LRNmza5ftwqSQ/36aefuuBZ86uP9GOPPebWQQ0Asn//fuvUqZMrL58wYYKNGDHCxo0bl+w9vvrqK7cuCtI/+OADe/TRR91nd+/ePYNbEgAAAABio0Q8D9iwYYMLno8++mirVKmSezz33HN24MAB97wC1h07dtiwYcOsdOnSbpr6XassXK8rXLiwC87HjBljvXv3dn8rIP7mm2/ctMy46KKLrFevXqH3V6l5o0aNUgTrY8eOdRnnO+64w/1drVo1S0pKsjvvvNOWLVtm69atsz/++MMF4lWqVHHzKMMdnlXXuiq4bt++vftb8ylQv+GGG1y/8cqVK2dyywIAAABADslgq0x45MiR1qxZM9f3tnPnzrZ69eqY86tkWf2AzzjjDFfG3K1bNxc8InUnnHCCtW7d2rp06eJKrHv27OmC0xo1arjnly5dascee2wouJbatWu7ba3gV9q0aWM7d+502WBRNvvII490311mNG/e3AXKQZm4gvyLL744xXxaNg2gFk6BePCcHlruILgO1rdo0aKhvxctWmRvvPGGKyEPHtoW8ueff2Zq+QEAAAAgRwXYo0ePtokTJ9rjjz9ukyZNcgG3yn1j9Y1Vma/6AquEWQ/9X5lMpG3o0KGuLDoop1Z5tG6JJQULpl3IoMzy2WefHSoT1+27Lr/8csufP3O7kAJglZcrc60+1L/99pvLVEdSEB5J+0mw3Bp0Lfg7XPg6BfuVStqDx7vvvusGVWvYsGGmlh8AAAAAckyArSB6/Pjx1rVrV9e/VhnT4cOHu2Ar2j2S1U947ty5LsutDGWdOnXs1ltvtYULF9q///4bl3VIFD///LMNGDDAqlevbjfeeKMru9bfs2fPdlUBymSvWLHCtm/fHnqNAl4NhqbvI6AycQ04pm2uzLH+zgqViX/xxRcuaG/SpImVLFkyxTzBPbbDBYOt6fZg2he03CoTD2hd/vvvv9Df6j++fPlyq1q1auih9VIfdJXGAwAAAEBCB9iLFy92wY2CuECpUqVc4BztNk3KeB522GEu+6jgSQ9lIdUnV69DbCVKlHCVAoMHD3ajhSs4Vkm2ysIPP/xwu+SSS1yZtbLa+l5+/fVXNxBYzZo1rUKFCqH3UTm4tnXfvn1dmf4xxxyTpeXS+ylDrT7S0crDRZlnNbio2kFBskYDV8WDsukKsNVVQIOw9ejRw3766ScX/Ov/4Zl1Ncrovtsa3E3v8f3337v+3wrMVeYOAAAAAAk9yFmQGa1YsWKy6eXLl0+WNQ2oL/CTTz5pffr0sdNOO82VBmtejRyd2TJlUYCnvsXR6D7NKi/WYGDBgGCBAgUKWNWKR9ihFHxe5LKkRYG0RtdWkPr666+7ZVdgqsBW669tq6z2U0895QYCU2OG+kgrUI38LA0epnkVrEc+F5RqB9ssluB5lXGrTPyzzz5zt9cKf00wz3nnnWdDhgyx559/3i2/StUVjGtU9GB+DbT2xBNP2M033+yWXZUNGrwseA+VnqtEXsutdVZjggJ09TGP9pnZRe+tz9CtzaKVtQMAMk/XBbpLBQAgMezatStqd9CcSMup80x65EuK01op+6wA7vfff08WIGvaxo0b7eWXX042vxZTA6Ipw6qspoIVlZQrk60BrJSlzShlO9O6F7KCQGVqixQpEpqmjVukSFErUODQFwAcOHDQ9uzZnTA7I5I32GgQP91aDADgl4JrVcHd0v8FW7o6ZUM9kIjOa1jXHu3U1u74ZJQt27I23osDeFHj8KNt9AV3u4GIFWQnCiUlTzrppJybwQ5GeVaAGz7is4KQaC3QGqBL2WqVCAfBtLKRykROnjzZ9S3OjEKFCoVG046kZdFAagquw5fx/yRla7YzNeHBPhKLGmw04jnfIQD4ld7MAgAgZ6j2/99+NxHoDkzpFbcAOygNV7Y6/BZL+lsDW0XSwFb6EsIz1Sr11TT1K87KCbl48eJRn1NmXQ+VVOsBZIX2Ie1PakBK2WADAAAA5B3FEqhbT0YaceM2yJlGDVewPGfOnGQjhatUINqtkzTYlgJpZZUD6jutvrbqYwwAAAAAQDzlj2cNe8eOHd0AVp9//rnrW92tWzcXSLds2dKVX//999+2e/fu0OBawb2wNa8e9913nyu1bdu2bbxWAwAAAACA+AbYontgt2vXznr37m0dOnRwJbTjxo1z/aLXrVtnTZs2dbeTEo0YrltNqU7/hhtusJtuusnNp2nR7p8MAAAAAMChFLc+2KKAWvde1iNS5cqVbcmSJcmm6b7HGtgMAAAAAICcJq4ZbAAAAAAAcgsCbAAAAAAAPCDABgAAAADAAwLsPOKcc85x9xcPHrpN2imnnOJGcp83b16K+adNm2bXXHONnXbaae6hQeg++eSTqO998OBBa9GihZ144om2efPmVJdDt2ULXw49tBzXXXed/fTTT3YoTZ06Ndk917WNRo0adUiXAQAAAEDuQYCdSQeSDibc59588832zTffuMdXX31lkyZNcvci79Spk61du9bNo1Ha77nnHnvyySetVatWbp4333zTzjrrLHcbtbFjx6Z43++++862bt1q5cqVs8mTJ6drWd5+++1ky1GtWjW75ZZbbOPGjRYvWnZtIwAAAABIuFHEE1mBfPntye/ftFXbDl1AWKVUeXuw8dWZfn3x4sXtyCOPDP2tW5899thjLnj+9NNP3e3PdNsz/V8BcN26dUPz3n777e7e5CNHjrTWrVvb0UcfHXpuypQpduqpp7qR3/W6zp07W758+VJdlrJly4aW5aijjrJHHnnE3n//fZsxY4bLqseDlgkAAAAAMosAOwsUXC/b8n+Z30RVsOD/7QKFCxd2/yqbrHLv8OA6oAD8jDPOsCOOOCI0TZnrzz77zO677z5Xdv7GG2/Yt99+6+5hntHlCJYh8MMPP7iA/tdff7W9e/faMcccY126dLE2bdq45//55x/XQKCy8127dlmdOnXccjRq1Mg9r9eMGDHC3nvvPfvvv//s+OOPd/dej7VsKhG//PLL7e6773al4vPnz7czzzzTJkyYYFu2bLF69eq5z9Pt4mT79u02aNAg1yCxb98+t810y7mTTjopQ+sOAAAAIHegRDwP27Bhg/Xr189ltps3b2579uyxpUuXuj7R0ZQsWdL1xw4PhD/44AMXXF5wwQUusFWZuIL0jNDnvvDCC64vd8uWLUPLppJxBavqD/7OO+/YySefbA8//LBt2rTJzdO3b1/3WgXAyn6rzPyOO+6wnTt3uud79erlgv0hQ4a497joootcgD5z5sx0LZcCfAXZKotXZj8I6INSemXqV69ebc8//7y99dZbVr9+fddXfdGiRRlafwAAAAC5AxnsPESB4Pjx493/9+/f7zK8ysY+/fTTruQ76P9cunTpdL+nysMVWAYl4wpiFWDrvVSCHovKzFVGrkB19+7d7t8HHngg9BoFzsokK8gOys1vvfVWF2ivWLHCZdFXrVplNWvWdJntokWLuuD7kksusQIFCtjKlStd8K/5TzjhBPf6m266yRYvXmzjxo1zWfq0aBspQx1sj/bt29vgwYPd/2fPnu0GZdO/ZcqUcdOUPV+wYIG9+uqrrg87AAAAgLyFADsPUYCo0bolf/78LjBUVjqgvxXMqhw6PRSs/vbbb9a7d+/QtIsvvthllNUX+84774z5WmWF1fdaduzYYXPnznWZZlFmuEqVKta2bVsXrCqrrmBanyfqCy533XWXK8nW6ObqA67SbwXuRYoUCWWRNRJ6OGXbS5Uqla71UxAf3tigbaXXi9ZbjQJnn312steo0UKNAwAAAADyHgLsPETBYtWqVWM+r9Jv3WpLWdhotm3b5oJaPVQOrttcyYABA2zgwIEpRuTWwGgK5KNRxluDogXUf3rZsmUuu6wAW/9XcKx+zeoHrdLxww8/3K688srQa84//3z7+uuv3UMjmb/00kv2zDPPuHJtBb/y+uuv22GHHZbss2MtU7TtEYvK2TUCe7AN0vs6AAAAALkXATaSueqqq1zfZmVoIwc6UzZZ/ZIVGCuTq8HDlDXu2bNnsvk++ugjGz16tM2aNStFhjc1CoqDwFhl5urPraA58MUXX4TmU6Z46NChbsAz3U5MD5WaN2nSxPWxDkrA//77bxe8B4YPH+4CbN2KLCtUmq6B07QdatSoEZqubL4Ge4vXSOgAAAAA4odBzpBMu3btrFmzZq6/srK/6u+s0mz1RX722WetR48eLvv85ZdfulJyzadgM/yhftPK7qY22NnmzZtd8KvHunXrXEm5AvZLL73UPV+hQgVbv369C9L/+usvd/suBf6i4FpZ4oULF7rbe6kv9Jo1a1w2WQOcNWjQwI0YruD+0UcfdYG5BiPTQGrqh67y86zSNlLfbt0bXP2w1edbWXwtQzDKOAAAAIC8hQx2Fu9Lnds+T9ldBdJBP2pliXULLQWsKr8+99xz3XwKJDVqtzLGkRRcq5T7lVdesbVr1ya7Z3YgvNS7UKFCVqlSJbv55ptD/bavv/56+9///ucCegXUxx57rBtETLftUmCte3crG62gVqXoumVW9erVXT9ujXQuel6PPn36uNuJKbB+4okn3K24skoDqWnAOA16du+997rbhCmw1jZq3Lhxlt8fAAAAQOLJlxTU5OZBCtQk1n2LVXK8fPlyF0hqlOpwB5IOWoF8h74AIF6fi6xLbX8CAPhxS/8XbOnq9fFeDMCL8xrWtUc7tbU7Phlly7asjffiAF7UOPxoG33B3Zab4sZwRGqZFK8gl+AaAAAAAHImojUAAAAAADwgwAYAAAAAwAMCbAAAAAAAPCDABgAAAADAAwLsdMjDA63DI/YjAAAAIHcjwE6F7s8sO3fujPeiIBcI9qNgvwIAAACQuxSM9wLkZAUKFLAyZcrYxo0b3d/Fixe3fPnyxXuxkICZawXX2o+0P2m/AgAAAJD7EGCnoUKFCu7fIMgGMkvBdbA/AQAAAMh9CLDToIx1xYoVrXz58rZv3754Lw4SlMrCyVwDAAAAuRsBdjopOCJAAgAAAADEwiBnAAAAAAB4QIANAAAAAIAHBNgJ6sDBg/FeBMA79msAAAAkMvpgJ6gC+fNbv3HTbOW6TfFeFMCLqhWPsD63XB7vxQAAAAAyjQA7gSm4Xrp6fbwXAwAAAABAiTgAAAAAAH4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATaAHKFsqcPsQNLBeC8G4B37NQAAeUfBeC8AAEiJ4kWtQL789uT3b9qqbRvjvTiAF1VKlbcHG18d78UAAACHCAE2gBxFwfWyLWvjvRgAAABAhlEiDgAAAACABwTYAAAAAAB4QIANAAAAAIAHBNgAAAAAAHhAgA0AAAAAgAcE2AAAAAAAeECADQAAAACABwTYAAAAAAB4QIANAAAAAIAHBNgAAAAAACR6gH3w4EEbOXKkNWvWzOrXr2+dO3e21atXx5x/3759NnTo0ND8HTt2tN9///2QLjMAAAAAADkuwB49erRNnDjRHn/8cZs0aZILuDt16mR79+6NOn/fvn1t6tSpNmDAAJsyZYqVLVvWBeXbt28/5MsOAAAAAECOCLAVRI8fP966du1qLVq0sNq1a9vw4cNt/fr1NmPGjBTzK7OtoPqJJ55wGezjjjvO+vfvb4ULF7Zff/01LusAAAAAAEDcA+zFixfbjh07rHHjxqFppUqVsjp16ti8efNSzP/tt99ayZIl7ayzzko2/xdffJHsPQAAAAAAyFMBtjLVUrFixWTTy5cvH3ou3PLly+2YY45x2e22bdtakyZNXHn4n3/+eciWGQAAAACAWApanOzatcv9qxLvcEWKFLGtW7emmP+///6zlStXun7bPXr0cNnrMWPG2DXXXGPTp0+3cuXKZWo5kpKSbOfOnZZI8uXLZ8WKFYv3YgAAMnDO0/kG2YdzIwAkll0JdG7Ucuo8k6MD7KJFi4b6Ygf/lz179kQ9QRYsWNAF2eqnrf7Xov83b97cpk2b5gZHywyNTJ5oI5Fr+6iUHgCQGFSFFTQsI3twbgSAxLI8wc6NkYnhHBdgB6XhGzdutCpVqoSm6+9atWqlmL9ChQouyA6Ca1FgrrLxNWvWZHo5ChUqZDVq1LBEkt7WEwBAzlCtWrWEaaVPVJwbASCxVEugc+OyZcvSPW/cAmyNGl6iRAmbM2dOKMDetm2bLVq0yN3fOlLDhg1t//79tnDhQjvppJPctN27d7vRxS+++OIsnZCLFy+ehTUBACB1lC4DAJC458aMNOIWjGeKXYH0kCFD3P2sK1WqZIMHD3aZ6pYtW9qBAwds8+bNbuRwZapPO+00O/PMM61nz57Wr18/K1OmjI0cOdIKFChgbdq0iddqAAAAAAAQ31HERffAbteunfXu3ds6dOjgguVx48a5su1169ZZ06ZN3QBmgVGjRlmjRo3srrvucq9Tn+xXX33VBegAAAAAAMRT3DLYooC6e/fu7hGpcuXKtmTJkmTTVFLet29f9wAAAAAAICeJawYbAAAAAIDcggAbAAAAAAAPCLABAAAAAPCAABsAAAAAAA8IsAEAAAAA8IAAGwAAAAAADwiwAQAAAADwgAAbAAAAAAAPCLABAAAAAPCAABsAAAAAAA8IsAEAAAAA8IAAGwAAAAAADwiwAQAAAADwgAAbAAAAAAAPCLABAAAAAPCAABsAAAAAAA8IsAEAAAAA8IAAGwAAAAAADwiwAQAAAADwgAAbAAAAAAAPCLABAAAAAPCAABsAAAAAAA8IsAEAAAAA8IAAGwAAAAAADwiwAQAAAADwgAAbAAAAAAAPCLABAAAAAPCAABsAAAAAAA8IsAEAAAAA8IAAGwAAAAAADwiwAQAAAADwgAAbAAAAAAAPCLABAAAAAPCAABsAAAAAAA8IsAEAAAAA8IAAGwAAAAAADwiwAQAAAADwgAAbAAAAAAAPCLABAAAAAPCAABsAAAAAAA8IsAEAAAAAiGeAvX37dnv99detf//+tnnzZvvyyy9t1apVPpYJAAAAAIC8EWAvXbrUWrZsaVOmTLFJkybZjh07bMaMGdamTRubO3eu/6UEAAAAACA3BtjKWnfo0MGmTp1qhQoVctMGDhxo11xzjQ0aNMj3MgIAAAAAkDsD7IULF9pll12WYnr79u1t2bJlPpYLAAAAAIDcH2CXLVvWli9fnmL6ggULrFy5cj6WCwAAAACAhFIwMy/q3Lmz9e7d27p06WJJSUk2e/ZsmzZtmr3yyivWrVs3/0sJAAAAAEBuDLBVCl6+fHkbN26cFS1a1PW7rlatmj3++OPWqlUr/0sJAAAAAEBuDLBffPFFa926tbtNFwAAAAAAyGQf7Oeee8727dvnf2kAAAAAAMhLAbay12PGjLEVK1bY3r17/S8VAAAAAAB5oUT8q6++srVr17qBzaL5/fffs7pcAAAAAADk/gD7ySef9L8kAAAAAADktQC7UaNG7l+ViP/555928OBBN4p4jRo1fC8fAAAAAAC5N8Detm2b9erVyz7//HMrXbq0HThwwHbs2GENGza0Z5991kqWLOl/SQEAAAAAyG2DnPXv39/Wr19v06dPtzlz5tgPP/xg77//vu3cudMGDhzofykBAAAAAMiNAfYXX3xhffv2terVq4emqTy8T58+LqsNAAAAAEBek6kAu0iRIpY/f8qX5suXz5WLAwAAAACQ12QqwD7nnHPsscces1WrVoWmacAzlY43b97c5/IBAAAAAJB7Bznr3r273XnnndayZUs3yJls3brVzjrrLHvkkUd8LyMAAAAAADlepgLsUqVK2WuvvWZLlixxt+lSybhu0xXeJxsAAAAAgLwkUwH23r177emnn7ZKlSrZtdde66a1bdvWzjzzTLvnnnusUKFCvpcTAAAAAIDceZuuWbNmWe3atUPT7rjjDps5c6Y99dRTPpcPAAAAAIDcG2DPmDHDhgwZYqeeempo2nnnnefuga17YwMAAAAAkNdkKsBOSkqyPXv2RJ2+b98+H8sFAAAAAEDuD7AvuOACN1r4Dz/8YDt37nSPBQsWWN++fe3888/3v5QAAAAAAOTGQc569eplDz/8sN1www128OBBN61AgQLWpk0be+ihh3wvIwAAAAAAuS/A3rRpkx1++OE2bNgw27Ztm61YscLmzZvnbtWlkcSLFy+ePUsKAAAAAEBuKBHfsWOHdenSxZo1a+aCavn888+tffv29vrrr7vHJZdcYuvXr8/O5QUAAAAAILED7FGjRtlff/1lEyZMsOrVq7t+17pd18knn2yffPKJffTRR9a0aVM3ujgAAAAAAHlN/ozcmkv9rnVrrnz58tk333zjstrXXXedFSpUyM2jEnFNBwAAAAAgr0l3gP33339blSpVQn9/9913bmAzZa0DRxxxhO3atcv/UgIAAAAAkFsC7KOOOspWr14dut/1rFmzrF69ela6dOnQPD/++KNVrFgxe5YUAAAAAIDcEGDrFlxPPPGEG9hswIABtm7dOrvmmmtCzy9evNiNLH7hhRdm17ICAAAAAJD4t+m6/fbb7b///nP3uVYf7K5du1rr1q3dc0899ZS99NJL1qJFCzcfAAAAAAB5Tboz2AULFrRevXrZnDlzbPbs2XbHHXeEnrvsssts6tSp9txzz7n7YafXwYMHbeTIke7WX/Xr17fOnTuHytDT8t5771mtWrVszZo16f48AAAAAADiHmCnRoFunTp1Mvy60aNH28SJE+3xxx+3SZMmuYC7U6dOtnfv3lRfp9uF9evXLwtLDAAAAABADgywM0NB9Pjx412puUrLa9eubcOHD7f169e7W4LFoiC8e/fuVrdu3UO6vAAAAAAA5MgAW4Oi6T7ajRs3Dk0rVaqUy4TPmzcv5utUhr5v3z677bbbDtGSAgAAAADgcZAz35SplsjbepUvXz70XKRffvnFZb0nT55sGzZsOCTLCQAAAABAjg6wd+3a5f4tXLhwsukaJG3r1q0p5t+5c6c98MAD7nHsscd6C7B1T2+9dyLRKO7FihWL92IAADJwztP5BtmHcyMAJJZdCXRu1HLqPJOjA+yiRYuG+mIH/5c9e/ZEPUH279/fqlWrZu3bt/e6HCo3//333y2RaPtkZlA5AEB8LF++PNSwjOzBuREAEsvyBDs3RiaGc1yAHZSGb9y40apUqRKarr81KnmkKVOmuJVq0KCB+/vAgQPuX92Lu0uXLu6RGYUKFbIaNWpYIklv6wkAIGdQA3GitNInKs6NAJBYqiXQuXHZsmXpnjduAbZGDS9RooS7r3YQYG/bts0WLVpkHTt2TDF/5MjiP//8sxtNfOzYsVazZs0snZCLFy+e6dcDAJAWSpcBAEjcc2NGGnHjFmArG61AesiQIVa2bFmrVKmSDR482CpUqGAtW7Z0GerNmzdbyZIlXQl51apVk70+GAjt6KOPtjJlysRpLQAAAAAAiPNtukT3wG7Xrp317t3bOnToYAUKFLBx48a5su1169ZZ06ZNbfr06fFcRAAAAAAAcnYGWxRQq8xbj0iVK1e2JUuWxHzt6aefnurzAAAAAADkmQw2AAAAAAC5BQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAJDoAfbBgwdt5MiR1qxZM6tfv7517tzZVq9eHXP+P/74w2699VY7/fTTrXHjxta1a1dbu3btIV1mAAAAAAByXIA9evRomzhxoj3++OM2adIkF3B36tTJ9u7dm2LeLVu22E033WRFixa11157zV544QXbvHmzm3/Pnj1xWX4AAAAAAOIeYCuIHj9+vMtCt2jRwmrXrm3Dhw+39evX24wZM1LM/9lnn9nOnTtt0KBBVrNmTTvxxBNt8ODB9ueff9qCBQvisg4AAAAAAMQ9wF68eLHt2LHDlXoHSpUqZXXq1LF58+almF/zKeOtDHYgf/7/W/xt27YdoqUGAAAAACC6ghYnylRLxYoVk00vX7586LlwlStXdo9wY8eOdQF3w4YNM70cSUlJLjOeSPLly2fFihWL92IAANJp165d7nyD7MO5EQASy64EOjdqOXWeydEBtjaoFC5cONn0IkWK2NatW9N8vfphT5gwwXr37m1ly5bN9HLs27fPfv/9d0skuoBQph8AkBiWL18eOu8he3BuBIDEsjzBzo2RcWuOC7CDUm/1xQ4v+9aAZam1QKv1YMSIETZmzBi7/fbb7brrrsvSchQqVMhq1KhhiSS9rScAgJyhWrVqCdNKn6g4NwJAYqmWQOfGZcuWpXveuAXYQWn4xo0brUqVKqHp+rtWrVoxs829evWyDz74wP174403ejkhFy9ePMvvAwBALJQuAwCQuOfGjDTixm2QM40aXqJECZszZ05omgYrW7RoUcw+1T169LCPP/7Yhg4d6iW4BgAAAADAl4LxrGHv2LGjDRkyxPWhrlSpkrvtVoUKFaxly5Z24MABd5/rkiVLuhLyqVOn2vTp012Q3ahRI/v7779D7xXMAwAAAABAvMQtgy26B3a7du3cQGUdOnSwAgUK2Lhx41y/6HXr1lnTpk1dUC0qCxfdB1vTwx/BPAAAAAAA5LkMtiig7t69u3tE0i25lixZEvp7/Pjxh3jpAAAAAABIkAw2AAAAAAC5BQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAOABATYAAAAAAB4QYAMAAAAA4AEBNgAAAAAAHhBgAwAAAADgAQE2AAAAAAAeEGADAAAAAJDoAfbBgwdt5MiR1qxZM6tfv7517tzZVq9eHXP+LVu22P33328NGza0Ro0a2WOPPWa7du06pMsMAAAAAECOC7BHjx5tEydOtMcff9wmTZrkAu5OnTrZ3r17o87ftWtXW7lypb388ss2YsQImzVrlvXt2/eQLzcAAAAAADkmwFYQPX78eBc0t2jRwmrXrm3Dhw+39evX24wZM1LM/+OPP9rcuXPtqaeesrp161rjxo2tX79+9u6779qGDRvisg4AAAAAAMQ9wF68eLHt2LHDBcqBUqVKWZ06dWzevHkp5v/hhx/syCOPtOOOOy40TWXi+fLls/nz5x+y5QYAAAAAIJqCFifKVEvFihWTTS9fvnzouXDKUkfOW7hwYStTpoytW7cuU8uwb98+S0pKsl9++cUSjRoWbjznZNt3oG68FwXwomjhQrZw4ULrUK6h7T/8QLwXB/CiYP4Cbr/WuQbZj3MjchvOjciNCibguVFxo84xOTrADgYnU5AcrkiRIrZ169ao80fOG8y/Z8+eTC1DsJHSu7FymjIli8d7EQDvyhQ5LN6LAHiXqOeZRMS5EbkR50bkRvkS6NyoZc3xAXbRokVDfbGD/4uC5WLFikWdP9rgZ5q/ePHMnUwbNGiQqdcBAAAAAJBj+mAH5d4bN25MNl1/H3XUUSnmr1ChQop5FXD/+++/rqwcAAAAAIA8GWBr1PASJUrYnDlzQtO2bdtmixYtcve5jqRp6put23QFNKq4nHrqqYdoqQEAAAAAyGEl4upP3bFjRxsyZIiVLVvWKlWqZIMHD3aZ6pYtW9qBAwds8+bNVrJkSVceXq9ePTvllFOsW7du7t7XO3futD59+thll10WNeMNAAAAAMChlC8pjsO3KYgeNmyYTZ061Xbv3u2y1AqaK1eubGvWrLFzzz3XBg4caG3btnXz//PPP/bYY4/Z119/7QY3u/DCC61Xr17u/wAAAAAA5NkAGwAAAACA3CJufbABAAAAAMhNCLABAAAAAPCAABsAAAAAAA8IsAEAAAAA8IAAGwAAAAAADwiwAQAAAADwgAA7Af33339Wr149O/PMM23fvn3JnrvuuuusVq1aoUfdunWtadOm9sADD7h7i6fmnHPOsVGjRrn/a169fs6cOVHn1XO6f3lg27Zt9uSTT7r3OPHEE+2MM86wu+66yxYtWpTs/cOXLfKhZY+2DpGPzZs3Z3ldIwXrG/lo0KCBXXbZZfbhhx9Gfd23337r5rvzzjtjbqcrr7zS3fM9kpb/wQcfTDZv+OOkk06y888/34YMGWI7d+7M0Proe9N7BNtB35X+fu2112Kue/BdB/MGj9q1a9spp5xiHTp0sE8++STq58R69OvXz8334osvuvf5/vvvU3z+U089ZaeffrqtX78+Q+sIIGfRMV4PnaMi6VgXHONFx8SJEydau3bt3HH2tNNOs/bt29vkyZMt8u6h0c4dJ598sjs+Pv3003bw4MEU87700ktRl7FPnz7u+eBcF+6tt95yzw0YMCDFc2mdE0Xvqc9PbbnDHxk5hkbOp+Optlvbtm3tzTffTLHN0hKcP/v37x/1+bFjx7rnI89R4ef9WNcPGTnXh79/avtLeq5/0nrP9Ir8bP1f+2e0c1Tkd67Xxlrvrl27JnvtL7/8Ynfffbc1btzYne9btmzprqP+/vvvLC0/gPgrGO8FQMYp2CtXrpw7CH/66afWqlWrZM9fdNFF9vDDD7v/79mzx1avXm3Dhw93Fy+6gDj66KO9L9Ptt99u+/fvdxcmxxxzjP3zzz/2wgsv2LXXXusumI477jj3bxBo/vjjj+7E8vbbb1vFihXdtEKFCkVdh0iHH354tq2rTpa6aBFdsGgbP//88y5or1SpktWvXz/Z/LrYqFatms2cOdM2bNhgRx11VIr31El03Lhxduutt6b5+Q899FDo+1RQrdcqAP35559t/PjxybZRZgwdOtSaN29uVapUSXPeb775xv2ri9ctW7bYe++9Z/fcc4+74LvqqquSzRv+PYYrVqyY+/fmm2+2r776ynr27Onep0yZMm76559/7i6Ex4wZYxUqVMjSugGIv7/++ssGDRoUCgyjUWCkRkkd39QQq4ZRnRu+/vprF2B88cUX7lhcoECB0Gt0DNEjvFH3o48+cvMddthh1rlz59BzOk6qMfCmm25K9rk6R82YMcPy5csXdbmC4/k777xj999/vxUpUiRL2yL8nBdYuXKlderUya1zRo6hkfPpuKxtoG31+OOP29q1a61bt24ZWj5tJ20PnUMjt8n06dNjbqe0ZORc7/v6J7ts377devfu7RqL06JriGgNOOH707Rp09z7qQH/ueeec+v0xx9/2OjRo+2DDz5w1wxBIwyAxEMGOwFNmTLFmjVr5rLEkyZNSvF80aJF7cgjj3SPypUru9ZRHax1sTJs2DDvy7N06VL74Ycf7NFHH3XLpEBU2QV9VqlSpVygK2XLlg0tV+nSpVNMC4KuyHWIfISf9H2vq5YreL/y5cu7rLgyyIULF3YXc+F0caMTfJcuXdxFkC4golGDg062y5YtS/PzS5YsGfr8qlWr2iWXXOJOvvPmzXMXfVl1xBFHuCA+PdmOYDnUaKBsSY8ePaxjx47uAvjff/9NNm/49xj+KFGihHs+f/787qJ79+7dLoMUXIj36tXLbrzxRjv77LOzvG4A4k/HO2VUv/vuu5jzqNFS5wxlsHVMOfbYY10jrI4Fr776qmuM03E8XPHixZMdWzS/gnNVvygYDKfzwE8//ZQi4zh79mz3PtEC2T///NMFg2pMDYL3rIo8Luo8oaBK55aBAwdm6BgaOZ+Oy8cff7zddtttrjFADdr/+9//MrR82nYKVBcsWJBs+vLly23FihXu/JfV9U7rXO/7+ic792s1AMU6z4dTA0K071LXQ8H2feSRR1xG+4knnnAZeV2/6Dz4+uuvu8/Sdxqt8g1AYiDATjC6CFA2s0mTJq6cSGVjOlinJ3BTKZkCwr1793pdJgVPMmvWrGSBm04yEyZMSFfm1iff66r1K1iwoHuEUyuzMjFnnXWWOzFGy1aIshXKGCt7m5kTpkruTz31VPd5WaWLOl3Y6iI2M2644QbbsWOHy9hnlDLUjz32mMssvfvuuy5g13bRhQSA3OHSSy91Aa6yotFKxZV5VVcVHaOrV6+e4vk6depYmzZt3Dzhpd+xKCsYeWxWA6+qlz7++ONk0xWIq+opWmZW2WsFgzqWq0tMdgRvatxct26djRw50p2nfFFFkc63GW0UUNCn0udo26lFixauMSI3XP/4oO10xRVXuAZmfYdZoX1LVReRFRaixnydE5XNVhc0AImJADvBKIjTSU9Bnfqf6aSa3guBmjVrugyiWqZ9qlGjhuuDpL5wujjRRYQuVlQyrZZYlT4dar7WdevWre6EumvXLmvdunWKlvRGjRq5lnmVqemkGy3w1AlTge3vv//usgyZXZ/FixdbVjVs2NBljFRGr1LFjNL3qSzMkiVLMvX5urjVhbX2Eb2HliOrZe8Acg4Fr8rK6dip7i2RFBCpAkZBbCwK0Ddu3Oi6/MSixlNV9SgIUUAe7VgTHjhq/s8++8wuvvjiFPOq4VONfuedd56rftLxXNlsH8fcwCuvvOIaF1XppYognxSsKQOameOytpPKxMMbxxWoR9tOiXz944POW2oYURVCVmjfUiOQrg2i0W9DDUfz58/P0ucAiB8C7ASi/mPqv6pgVqXRKrNSPy5dZKj/cVqC8iT1JfLtmWeecRcOKr3ThYpKf9XXV33ComUx0vL++++7fkyRj+7du6fr9ZldV/XjCz4rGEjlt99+c/2fTzjhhGRl8b/++mvoIkTfg74PlUZGo5OpMtnaTnptRml9MrMdo1HruDIX+o7SkyGKpAuMyO2qxodo35cyDpF0YaR9WSXw2TEeAID4UjchVeyoe1AwlkNAgXfkWBqRgueCAS2DsvLwY4uOqZqmTLnG+ogWOKpMXA29okBcjaHKkEdSSbpKpYPj+YUXXugC7VjH84zScgwePNgNeKkGxmgycgxN73E5PS644AK37gr6ROcnNRbr/J2brn98ULm++rtrnw66vkWjKrHI7zG8wUK/gdTK5FU1p2oKjX0CIDExyFkCUQn2pk2bkh2o9f8vv/zStThrsIzUBCffIPhMTZBVjBaABdPCy/J0MXLNNde4hwJBnWC0TAq21TKu7HZG6CSqvnCR0luylpF1DacRVRVYK/utiysNqHLLLbe4/l6R2WttI5WpSfB/tbCrb7EuMCOpv6AGpNEoo6mdnGOtj6+SQmWglVFXJlul4sraZIS+38hl0Yiz0QZ4i+zrqMHv1Adb23Pu3LlucDNtFwC5y9VXX+0ytsr2hXdvCYLn1ILBIAhXQBzQwJUazVnZZt2NQAM2KhCOFlwHXWtUcaNluP76613Zc6ysrI7nqrQKjvMaq0L/V0CnRt2slEorW6+GZlUhBeNPRJPeY2hqx2X17c4orbcqm7SdlDnVdlIjaLTsqs75sRplNT2yVD8tGXm/rF7/+KL+32ooUXVG5EB14fuexm4JF74u+g2ktv/rmknfZ2qNUAByNgLsBBLcHiNaQKIyqbROMMrE6kJBA8roAkbldzoRhB/Ug1FbU8sABwNcBYOXqLxMA3jdcccdoVZe9d/SQxdImSnhUsmbMpyZFb6uGaELnOBzdTGk0vB7773XlfepH7So37UuvPSvMtzh208XBQqeo43mGpSK60JRF1MZXZ9omZes9CfTxapKtDVQTnppEB2Nbh65LMpEq0QxNdo+6net7aBMvrJPCrB1kRI5OjuAxKcGSw3UGD6gl8ZdUAWNBm4MGigjqfEtGLgyoPNNcGxW322dI5Ql13E+fATxaGXiCvZ1x4JoA1QpS66uPTqe61ZJAR3LdcxS40DkXRPSKzjmKVhSY2askuD0HkNj0bgYKr2P7MaUXiqJ17FYjb8KVmPdwUPXBbECQ11TBNcE6aX304By6Xm/rF7/+KTtpIoINR4Fdx0Jpwx7atcvupbQ+qjbQrR9YuHChe48m1o3CgA5GyXiCUKZP7XgqrxMJVHhDw28ofKu1EqPdYLXvGrxV7ZVFw0KsML7XelEF2QMlOXURYwy0ZHUL0j97ILgXCO16tYS0Qb+0An0UPfBjlzXrNAJVEG3LpIUbIsuxnRRppL48O9B2XplKZQNUTlbNLqAU6m4tldq/QvDqRRdJYa6UPVJpeIaeKxv377pfo1G/VUDSmZG/Vb/c2We1LKvDLhGUFX/fVUq+Cp/B5BzKGhUMKLKnuBcokZcjRauadHKnzW4k46nqrAJv01XJAVUOsaPGDEiZt9jBdgaIVvHZGWzNfJ4pKCx9Nlnn01xbs1sA3FAjYgqP1e2U5+fXdSoq3N5Zm9ZpYy1ysRVtaXANrzhOJxGFY92TbBo0SIXEIY3UKSH3k/nt8jBSPW3buEWvF9Wr3980zlQjUcKsrX/ZJQa2VUlF21MFl07qDpD11+xMuQAcj4y2AlCB3EdeNVSHznyqm4TpXsqBhcCOnDrZCm6cFDWUQGdTsDKxga351C/JWVSdVJWKbT+Dj+xavRv3UpC5XI6Aev1OukpQNIJIgicddLTZytgV9CkFl21qCsQ1/unVhYXS/g6RFKrdtDqm551zQplSdTnSqN96kJOF4u6WFPZnrIikReAmk99mzWYji7+otH9X1UqHu2CQNmBYH2C+2DrZKvvS6Pz+qRWdg1GpO8tmmA5lMlRg4JKB3ULEW2PyFvH6Plo94xVWZzK3HQBpO2nKoegVV7fofYl7T+6Z65u4wUgd1E5rbLI6rcalDvrftbK0qm8W/dIDgIJzaMRtlWeHSsrHU7nFt16Sw2hCg6DO1oENG6GMok6hup2VtHoeK5zVrSuMurypGobLWtQrqtjcmSfXzXCRt6zWBl6rYveQ4FitPNZeAl8WsfQyPl0jlMwrAZffY6uA1QdkBlaDp1j1E9cZdexSr3VOKzvTg0Gl19+uVsOncd0HNfAYxkNsNu1a2cvv/yyy0rffvvtrsRdXax03aBl0PMZuf4JrjXU714NG5G0jL5oJHNdA2i/i9YlLDVqbFFVhxrulaDQb0QVG2pwUiWBBmcNbjcKIDERYCcIlRMp+I12WxOdVHVxoJOQLiZUXhfcrkMnKR249bzuCx308VLmUCdJtdrrAkKvUz/p8BO0TqDKZKs8Wi3xOsHpxKATrDIQAQVbymzqxKD3UyZbJwZd3OiEndE+vqLlj3XLEQVqQfAaPl+sdc0qbXcFgSrxU0ZE98LURWG0k59K9PTZOtnHCrAVWGpk8mhlhwMGDHCPYD59L7oIVR/C7DjZqlRc762LnEjBRa+qFfQdq4xbLe7RWtV1gRCNys+1byhbrkGJdBEV+bye08WGBtXJiSPXAvBTKh5QIKzjuDKQClDUVUUBo44HqmhRYBXtVlqR1MirBk2Viuv4HH5eCuiYrXNTtOyusqdBgBiNgmMd83Q8D45d0ebVuVLH9HAK/NVfXI2SekSjsvX0HEPD+7CHz6fyeHXX0bk8s9nr8O2kjGxqx2A1fCjwUwCsCgNVdanRRK8NuohlNLDX9699QedUdT8LBi9TQ25QIp7e659g3Bbdgz3afdgze/eLWBQgRw7il166PlAXthdffNE1MGhAM1WUBXdk0bUMgMSVLym8RhgAAAAAAGQKfbABAAAAAPCAEnHkauqLFatUO6B+YyovTATqBx1rhNfwfuDqCw8AyFs0noX6JKdGXbliDWSWm6m/9pw5c1KdR+Xo1apVO2TLBCB3okQcuZr6wK1ZsybVeTRQi/o+JQINHqd7gaZGI7dz/0wAyHs0CFpq91gWDSam8VXyYoO7BkZNa+T7rN59BAAIsAEAAAAA8IA+2AAAAAAAeECADQAAAACABwTYAAAAAAB4QIANAAAAAIAHBNgAAOQStWrVco+1a9emeO6NN95wz40aNSpd7/XPP//YRx99lOotjc4555wsLS8AALkNATYAALmIbjP0xRdfpJj+2WefWb58+dL9PkOGDLFZs2bFfL5Vq1Y2efLkTC8nAAC5EQE2AAC5yGmnnZYiwP7vv//sxx9/tDp16qT7fdK6i2fRokWtbNmymV5OAAByIwJsAABykXPPPdfmzp3rgurAzJkzXeB92GGHJZt30qRJrsy7QYMGdt1119mSJUvcdJWRT5s2zT2CMnCVl48YMcJOP/1069KlS4oS8V9++cU6dOhg9erVswsuuMA+/PDDQ7bOAADkFATYAADkIjVr1rSjjjrKvvrqq9C0Tz/91M4777xk8ynL/cwzz9gjjzziAulTTz3Vrr/+etu6davdfPPNdtFFF7lHeBn4l19+6fpyP/DAAyn6a+s1J5xwgnuv2267zXr27GmLFy8+BGsMAEDOQYANAEAuzGIHZeJ79+61b7/91k0L9+KLL7pA+Oyzz7Zjjz3W7r33XqtUqZK99957LtOtEvDIMvCrr77aqlevbjVq1Ej2XspWly5d2nr37u2eb9u2rd1///22e/fuQ7TGAADkDAXjvQAAAMAvBdNdu3a1/fv32/fff++y2uXKlUs2z59//mmDBw+2YcOGhabt2bPHVqxYEfN9FYBHs3z5cte/O3/+/9duf9NNN3lZFwAAEgkBNgAAuYzKvWX+/Plu9PDzzz8/xTwHDhywhx56yBo3bpxseokSJWK+b5EiRaJOL1iQywkAAIQScQAAchkFvM2bN3dl4uo3Hdn/WqpVq2br16+3qlWrhh7PPfec/fTTT+75jNzSSyXmGiAtfORxlZyrDB0AgLyEABsAgFxaJv7222+70vBjjjkmxfMq4X7llVfsnXfesVWrVrly8Y8++siOO+4493yxYsXsr7/+sg0bNqT5WZdccon9+++/NmjQIFdirhHGP//8c2vSpEm2rBsAADkVNV0AAORCTZs2dX2wo2WvpVWrVrZp0yYbOXKk+1cDl40ZM8Zlo6VNmzZ255132qWXXmqzZ89O9bNKlSplzz//vA0YMMBee+01F9APHTrUjSoOAEBeki8pvJ4LAAAAAABkCiXiAAAAAAB4QIANAAAAAIAHBNgAAAAAAHhAgA0AAAAAgAcE2AAAAAAAeECADQAAAACABwTYAAAAAAB4QIANAAAAAIAHBNgAAAAAAHhAgA0AAAAAgAcE2AAAAAAAeECADQAAAACAZd3/B17iRvm47PDDAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_comparison(\n",
" df_clustering_compare,\n",
" title=\"Clustering Performance: scVI Model vs. PCA Baseline\",\n",
" ylabel=\"Score\",\n",
" palette=\"viridis\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "109f62a1",
"metadata": {},
"source": [
"#### Visualize Embedding Results"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "706f2e23",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9gAAAHkCAYAAADFDYeOAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYcpJREFUeJzt3QmcjXX///HPGDNjJ7JFSpSlO7QgRVlKJZWkQioVRQotiBAVlTWSrdB2SxtScUebtNhalS3dyL5H1hkz83+8v/f/Or8zZ84wM65xZsbr+Xich5nrXOc619nGeV+fz/d7RSUnJycbAAAAAAA4IXlO7OYAAAAAAEAI2AAAAAAA+ICADQAAAACADwjYAAAAAAD4gIANAAAAAIAPCNgAAAAAAPiAgA0AAAAAgA8I2AAAAAAA+ICADQAAAACADwjYAHKFl156yapUqXLcy6BBg3y/z++++85Ohvfee8/d3/Tp04+77uOPP+7W3bhxo/t90aJF7veRI0daJCUmJtrs2bOtQ4cOduWVV1qNGjWsSZMm1rVrV/vmm29O6r40btzYrrjiiuO+nuvWrbOc4qmnnnKP4d133z3metu2bbPq1atbq1atAst0Oz0nGfmsvfHGG8dcV9vTem3atDE/6TXSdrUvmZEV++SnJ554Iuzfr3/961/WsGFD9/n+448/0vyMffzxx9axY0f3GdNtLr/8cnvooYds8eLFx73vpk2buvsaNmxYuvdXf5PC7e+FF15ozZs3t9GjR9uhQ4csu9DfRe2fnkfPnXfe6ZYdPXo0ovsGIOfLG+kdAAA/3X777XbxxReneX2lSpXsVKTHPWTIEPcFMlJ27txpjzzyiPuSf9FFF9kdd9xhp512mm3ZssU++eQTu+++++z666+3Z5991goUKHDS9+/qq6+2ChUq2LnnnhtYNnbsWHf57bffLCdQYJ42bZp99NFHdtttt6W53qxZs1wQu/XWW0/o/v7zn//YXXfdFfa6n3/+2TZt2nRC2z/VderUyc4555zA7wkJCbZ27VqbOnWqff755/b2229b1apVA9dv377dHn30UVuyZIldcskl1rp1aytRooT99ddfLgTPmzfPevfube3btw97f/psrl+/3n3+tL4OfMXGxmboM6SLJCcn2/79++2nn35yn6EffvjBXnvtNYuKirLs+lzr8xMdHR3pXQGQwxGwAeQqtWrVsptuuinSu5HtnH766RF9XlQVevDBB+3333+3F154wVq0aJHi+ocffthefPFFGz9+vAsRma1MnggFleCwIgsWLHD7k1NccMEF7iCKApYOXJQtWzbseh9++KELUTqgkVlnnXWW/fjjj64aXrp06VTXq1NB4W7Xrl2Zvo9T3WWXXWZ169YN+3dOFWnvM+N9xhSIf/31V3cwLfTzfv/997uDWs8995xVrFjRVbdDffDBBy5g6mCXPoMK5Bl5j+i9F3q/7dq1s6JFi9q///1v+/rrr8Peb3agKj8A+IEWcQBAltOX619++cWFgtBwLapqqbp9zTXX2Ny5c90Xe2SOqnCqHqpNOBxV49VefO2111qhQoUyfT/XXXedux+9XqGSkpJcdVv3Af9dddVVVrBgQXcgJTgcq1qsjoJwB9OKFCliAwcOdD+//vrrqa5XtfnTTz91B2m826sbwg/169d3/65evdqX7QFAdkbABnDK0pg7jQ9U4LjnnnvceME6depYr169bN++fbZy5Uq799573XJ9Qezfv7/7Ehpq9+7d1qNHD9eSqXU1vlhVpFDapqq3GnOscZHapto1N2/enGpdjZnWF2W1Ul966aWubfrgwYNhH8c777xjN9xwgxvPrC/eb775ZtjthY7B1vhYVar0JV1VJu272uu7dOli//3vf8O2Fbds2dJVzxo0aODGaHrjwrX9Y3n//fctf/78abYTe1Tl9sJC6HhUta4G0+9aruuDff/999a5c2dX/Tv//POtdu3advfddx93rHzoGGz9rAqt97PuZ8yYMe5nVWdDKZzoOj0nwdtLTzV++fLlrkVVz6veG3qP6DX/+++/U6ynavrEiRPd612zZk23vlqC1TbsufHGG11br9rEw5k5c6b790Tbw/W8qjNCQTqU2oFV2U6r+rl37157/vnnA5+FevXqucfx559/plp3xYoV7rnR/ekz1rNnT/eZC0fvW21H29N2NZ5YVd7Dhw9n6LFp+7p9uPerWuv12dVrEHwASZ8NfV71OVJ7fnrmSsgsHZDKkyeP25fQ11V/19Ki/dP74tVXX011nd7TGietSu6ZZ57p/p6oZTzca5JR3t+4s88+O8VydbTo9dJcCHq+tX9qaw/9fGm/VHnXARvtl6r6DzzwgHufhdLfXr1f9LdcBwv0N37y5MkpnqtwQsdge+PK9fdEHQEa+6591D5MmTIl1e2PHDliL7/8srte62kf1VHAQQXg1EOLOIBcRSE0rS/fojG/wWMAd+zY4cKXgoC+GH311Vfui6q+EK5atcqaNWvmln/xxRcuyOq2XhXI069fP9cuq+qsQrQmflIrpv7Vl20vUOiLo7arYFO5cmUXEFUh+vLLL922tQ3RfWlbarvVl0h9kVZA1b6GGjp0qPuyrPvRhD0a55yRicxUydRkSApluijoaZ8UalRF9sYjKtQNHz7cBdbu3bvbP//8Y2+99Va67kOvh75kKhyp6nYsatEuWbKkLVy40DJDIbdbt25uAi+1xOr+9BgVevU49doGj7E+Fn2p1thRTXKmnzU+u1SpUu5LtA426L0RbMaMGa7t2lvujek+3rj3DRs2uPegHrcO9BQuXNhV+/X8Kix47ztVhfWYdACgUaNG7v20Z88ed0BFz5ceY7ly5axYsWLuQItCip738847L0VAV2Vb7z+FmROh96U6DjQOOLRNXGPqzzjjjLD3ofeoJhjT41Y3gwKTJp3SdvTe1/tZ7xVZtmyZCz5xcXEu7Oq50XP/2WefpdquniuNLVZVXp+/4sWLu3HgaqFWSNLnUdtJD91Wz7HuZ+vWrVamTJnAdZqMT59FHUgTjStW+NPfEAVrPcd6L+jgmYJ927ZtzW96XPoMKkSKOgn0XGlIgN4DxxL8fgjmHdTy3r96PHpO9br07ds3XfulIBz891d/j3WQSpOc6eCdntPgx6ADe3qf6F/9bdb7QH9/1M2i11oHkEQh/Ntvv3Wvq8ak6z2kgxr63Ohvoze0Q+PS9fkvX768e330edTtdGBT+6GDXRkdA/7kk0+67ej9lzdvXjf+XQeH9D7zDlLFx8e7g7F6TKr+632oz4Qei94TCvgn+nkDkIMkA0AuMHr06OTzzjvvuJe9e/cGbtOuXTu3bPz48YFl8fHxyXXq1HHLX3vttcDyo0ePJl922WXJV1xxRar7vPnmm5MPHz4cWL5ixYrkqlWrJt9+++2BZU899VRy9erVk3/88ccU+7169erkf/3rX8kdOnRwvyclJSU3atQouV69esm7du0KrLdv377kq6++2t3fBx984JatW7cuuVq1asn33HOP2z/P8uXLk88//3y37oYNG9yyhQsXut9HjBgRWE/3o2WzZs1KsU9PPPGEW/7NN9+437du3er2UY/zyJEjgfXWr1+fXKNGDbeutp+W3377za3TvXv35PTQ/Wj9v//+2/3eq1cv97sebzD9ruW63tOiRYvkyy+/PPnAgQMp1n3rrbfcuq+++mqKx9+gQYNUr+e3334bWNa6dWu3LJieb72Wwa/Pzp073bLgfUkv7ZPu45dffkmxfPDgwe650PMvM2bMcOsNHTo0xXqLFy92ywcNGhRYptdOy4YNG5Zi3Xnz5rnlkydPTrUfWq7n5HiCn6clS5a4n994443A9Xov6v37wgsvBLar59HTu3dvt+y9995LsV19bvS+veqqqwLv5zvuuCP5ggsuSP7zzz8D6+k96L0u2hfvc3P99dcnX3nllcl79uxJsd13333XrTtx4sQUjzV4n8L56quv3HoTJkxIsbxbt25uP73XX/d73XXXpVhH7z8t79evX3JmeO95vV66H++ycePG5NmzZ7vXqUqVKsnfffedW1/Xaf1bb701U/e3Zs0ad/vmzZsHlul9p79jl1xySfLBgwePeXv9TTrW3129H3Qfwbp06eL+rnjv79DnfeDAgSkem/6GBtPf0qZNm7rXV7SPdevWTfV3SkaOHOm28cknn7jf9XdRvz/22GOp/j9ISEhI8Zj0nARvz7tt8N93vbe0TK9NsO3bt7t9atas2TGfPwC5CxVsALmKWp698X7hhJudOrgSGRMT4yrJas3VGFOPKrmqiqiyGEqVkuDKmKopqrzMnz/fVbrURjtnzhxXedG2gys8mgRKLdeqshw4cMBVtTXzsqolqqJ5VM3RDOmqpHpU+VbboypkwTPfVqtWzbV5qhp/PGolDh0nq/ZGtUd6FXNV8bwKTfCMwqrOqup9vFNCZaYyKsdr6QxHVVx1EQS/ztp3b5vhWvwz6pZbbnGvlyrBXgux2m7VWqo24YzyJiJT54Gq7Kre6nlWBTS0Oi96HYKpdVqPW229HrVIqzKofVT1z6vaqYKv97hfE96pKqmqvtrEvdZkVdM1sVm49nBV4TVmW/uq5zGYPjdq51X1V63DWmfp0qVuKEPwTNp6blS59Nr3Rd0m6lRQVV/3EfwZU9VUn091ZOj5TS/9HVFVXhVzdQ6Iqsaqsmub3udT1W29H1Qd1d8Szdiv919aY+AzQsM1wtFnb9SoUe51Fu/zn5nPjKgKLHr+PXrsei+qTVwdCcGndEuL3lfBcyyogq0uCnVj6PavvPJKoDtBVW11YOhvoEefIb1+wZ9VVYr190/vf3XQqFVb3R7q2vE+E6LXQNtTF0jo51yvy7hx49x7ILTz5HjUpRH8d0//D6jariq6R8+PxrirLTz4vafXRe3vmlRQrfan6lksgFMNARtArqLWV429zQh9WQvmfVkNXa6QplbMUOG+NGmsoQK2ArNup8Cui/eFOBy1oup0Ot7twz22YN66Xmt56D6lJ2Brdl8FrmDel0nvi643vlczD4e7n+Px2mt1CqH0UGul9kmtzhmlFk614au1W19odbBCbafeY/H+PRFq/da+Kax6AVs/KxAq7GaUvsArbOqghtq/8+XL54KrZltWWNFrJHoc+mIffODFozbrYHrPKexrzLjGqSrUKHzoPaFxz+G2kRkK7jpAowCl11dhW63pev8qDIXSPiik6vGFa9X12vf1WHW9Pm/h3t+hnwVvzgC15KY1MVdGTxmmvwM333yzazHX0AkNO9Bj01jb4IMDffr0cXMH6LnWRcFUB7g0/lth8EROS6X5ILz2Z21Hn00dkNHBk2B6j+h9E24YyfEo1Ooggmhcv557jwKjArae0/QEbH0GQv/+ariC3nN6L2t4jTc3gN6jGjqj9mkdINHro2ED3hho77Oqx6yWbB1w8lrV1ebujYPX6xL8d2rEiBHuEk5mThsX+v+At0/Bf0t03xoOcKy/77pvAjZwaiBgAzjlKZSFk94vxl51NJgXxLVt74uYKi6a9OZYQVRVONGX+FBphcNw64Y7EJDefQ+lCrCEOx+uvtQfjypUCkSaTE6VpWPNXK1QrKCmid2Ot2/eF/FgGieu8eKqMilU6guvN3GRN4HaidLzoEqfQqX2V2NuNWZdr21mwpSC3ODBg93+qStBIVsTz6kiN2HCBBduVLHU/WRk+wrY3nhxPRcKh9rGiU5uFkqdHhrfrMq0uizU8aCxsuEc733pVWCD32ve++9YnwVvu6pg64BFRj7nx3sOFbBVgVSQ04EUHUTwxgaLqut6bnUgQ6ehUgVf6+uAiUL2iZxyTgcpwp2mKxwd3NFp5RRSg7sZQul9pkCuscX6LOqgi1eNVWdAOBrfra6CcAdN0kOfQV30OVGHiaq9GtutwK0OHz1G/X3UOjpAERrmFdJ10EKPT2PgNamigrkmG9MBDh3o8t4Dmr9CB3DCOd4cEJn9G6n3o/7mPPPMM2muE3oKQAC5FwEbAE6QKsmhE2epoqYwpOqbvkyqZVQV7HDVdQUpfYlTG6tXuQ43i3foLNpeZU/rqq07mCbm8otXudb9hHuc6aFQp4mgNCGUvgB7FFAVYDTplSYBUhunt35oR0Fo0Apu0RRVrtWCqu3oNETBIc2r0PlFFUwFbLX+KxTq9VO1MzNU2dJ7SAcD1Gatiw4I6LFoBmwFEVUy9QVer6veR6HVfc1wr0qbzifu0WRXer+pjVbXq3LoLfOTgpGqqrof7aP2L63Zw1U5V6hbs2aNC0ShBwy0XLzJuvS8puezoPsVbTP08Sn8aN+OFTrTos+YgqteZ03EpbZ0tYt770m9TmqBVnjXel4Hg1rkNZO1DjqETjSXVXTQRwFU78vQ4QUeHeTSRGD6THsHurzJzTTUxZuUMZgOFOg2OtBzrAB5PN5BEb2mOiio4S56TTQkIPigW+jM4Doopwq3XmMdsNBFFNYVrHUQSf967wH9HQ19D2gbCubhqtF+0H2r80avf2hHkN4zmvwtPQcjAeQOnKYLAE6QZpUNrsxpJlmFZlVh1dKrL+OqwKiNUJWtYDoVmGYKHzRokPuSriqHvvwqDAW3auoLmmbNDW1V1pc5VXKCw6dCiippftEXWu2bvrirAupRpTmtU0GFUjhR+6kCtL5QB7cM64uyAraCpbanoBkc0FQx9MJBsNDnUu2meh30/AWHaz133qnLMjpG1QtSoRVTVTN1UbVW4UOvdWjbbnrpOdGsw8Hj+/V8e23f3j7o9dbjU7U4mN5vmmlcoS6UKoEKvHpetZ4qsumpyGWmTVzjpXUwQO/htFphdd96HHpvB5+KTRREVQlW6NJzq4MICkqaAVz77tFrqAM1wXSASYFc74ngU5aJnhvNfB96f+ml51DhSTNRS3B7uAK23tuawT/4s6GuDXUdSPD8CFlJ8yGowqzPabgDSmof13h88f7VQSr9rdBBQB340t+p0Itm5RaNKc/sHAaqfuv11d8AhWm1U2t8tj4zweFaz6f+ngV/VhWuNc+Ehn0E08E+jc32OhPUMq4KtT4foWeS0EE8PQ4N28kK6prQHBo6KBZM7xudMvCxxx7z/XMHIPuigg0gV9EX8WN9oVUgzegkN8ej8ZkKSGqVVTVSX3D1hVWn7/LoC7jafnUuZbWQ6ovmli1bXFVI+/vUU08F1tX5jzWRlaq4+vKuL42ahEhf4ILpy6lOZ6NKkE4FozGO3umz1AIaLnBlhoKLviSq1VVBWJUyfTnWgQXv3NzHa13Wl2AFSe2vngNNjKbJq1TR1JdTPW8a6yl6HoO3p+CgVmk9L1pPVSi1UutAQnC1SG3oqjiqjVcdA2o31UEABXpvbKraUzPCm4BJEzLplEjBlTEFLa+ip3OCh9LBE4UD7cex2kP13lGwVGVULc5eNUzPrwKEXlvv/jSZkip2euwK9XpcOvCiim+4CbEUkBRUNYZVz2l6xtFmhj5TatdVu7HCxLHoer3WGk+rUO6N+9Xj9drlvddf6+g50cRV+izoYIueA2/+AY9up/eHDlbpMeo2ei+otVnBWmE3s0ME9P7U66wJstR6HDw/gqqSqvxqwjG1xet50PneVbVUINVkaN7BBoVZHXhTS7Tanf2mAKf3hiZy69Gjh5v4TuP4vY4BVaL1edXBBq8KrM+KQq26L7Tf4ej9q/e9hi7oAEZa7f+i93vwgS+FZC3TfeuzqnOYi/4+qdqrv4XqztAQBu9AkDoW9Fi8z6o6UnT/+lupZfocarvqKtDfA91e9DdXnRqq3utvhoYr6P2i+9DnSwessuKUaaLnXH+T9D7QAUN9NrWv3j7r7wMVbODUQcAGkKuoWqVLWhRY/A7Y+lKlqokqXPpiqPGZqhAFfxHXuEJ90VfI1CzE+iKp6ra+LCq8ehP1iL5sqhKo7Sq0eEFJEyZ51aTgWdMVriZNmuRmoVaY0jhKtWCqauMXVbcUDBTe9WVR+67Ap/vRPoYbnx0urGpdtevqC7eqyqpga1sKLgoy+jKsL8l6rvR8qhqti8ZVawIp/asgoOdYwTJ4BnR9gdc5lLV/+kKtgKEv2Ho+FT4VDBRwwrUmp0VtvvrCr+2qwhwcsDXBkg5u6LGrKhtKgUz7rOfuWAFbBwb0WPTeUODRgRG9jqrka7+9SqgOUmg/9Bzo/aP3kQ42eFXGtCZj0n7qudZsxsHnc/aTwosODCgoH+/zpf3UASNVJPUYFES9c3fr+Q6ufuu118EYvbf1rzo19BroQI03wZxHy7WOnke9v3SwSY9XoUrBO7PtwXq/qaNCf1dCZz4XBXe9z3S97lshVq+ZXhN9PoOHQyhg6jOfFQFb9LdA+6H3kd4jqvTrM6bnVxVeHcwJPh+znid9FnTg7Fh0OwVsBcZjBWy953UJ/kzqedd7TwcNg8dwa/iD5kxQ67Y+r1pPnQj6TA0YMMAdpNBBRR1g1ME9VbYVqr3JG/WZ0mdd72+PDjLqOdDnRH+T9fdJByL1N1avRbizSPhB+6gDRPpsakZ9hW0Ffp3RQX/HFLgBnDqidK6uSO8EACD7UmBQxUgHJ0KpSq9QozZpbwzkifrpp5/cAQYF7WNNiBZpqkwptKjtWoEAAACAASEAgGPSzOaqAqsaG0wVQlVqVHlSG7lfNNGSqljZOVyLKlaqkKkdGQAAQGgRBwAck9o2NQ5TLeeaPEhtjxovqfZStTOrzfNEzvWb02g8var6am9WWzun3wEAAB5axAEAx6VgrXGNmjV769atblyqxt1qgqf0nqc3t9CEWxofqjG/mjxMEzYBAAAIARsAAAAAAB8wBhsAAAAAAB8QsAEAAAAA8MEpPcmZTgWjDnmdpxEAAAAAgFAJCQluQled6eR4TumArXDNEHQAAAAAQFoykhlP6YDtVa4vuOCCSO8KAAAAACAbWrZsWbrXZQw2AAAAAAA+IGADAAAAAOADAjYAAAAAAD4gYAMAAAAA4AMCNgAAAAAAPjilZxEHAAAAkLMlJia68xQDmT2zVHR0tPmFgA0AAAAgR56beOvWrfb3339HeleQwxUrVszKlCljUVFRJ7wtAjYAAACAHMcL16VKlbICBQr4Eo5w6h2kOXjwoG3fvt39XrZs2RPeJgEbAAAAQI5rC/fCdYkSJSK9O8jB8ufP7/5VyNb76UTbxZnkDAAAAECO4o25VuUaOFHe+8iPsfwEbAAAAAA5Em3hyG7vIwI2AAAAAAA+YAw2AAAAAETQ6tWrbdy4cbZ48WLbu3evm9X6kksusU6dOlnVqlUjvXvIACrYAAAAABAhf/zxh91+++1u0ra+ffva5MmTrWfPnrZ582a77bbb7Oeff470LiIDqGADAAAAQIRMmTLFTjvtNHvllVcsb97/i2dXXXWVXXvttTZ27FibOHFiRPcR6UcFGwAAAAAiZOfOne58zElJSalmtu7Tp49dd911gWWzZ8+2li1b2oUXXmiXX3659e/f37WUe5544glr3Lhxiu1s3LjRqlSpYtOnT3e/L1q0yP0+bdo0a9SokV100UX27bffuuvmz59vrVu3tlq1aln9+vXd9vft2xfYlqrqjz76qNWpU8dq1qxpd999ty1fvjzLnpuciAo2AAAAAERIw4YNA8H2lltusUsvvdTOOeccN7O1KtgeVbJHjx5tbdu2tUceecQ2bNhgo0aNci3k7777ruXLly9D9ztmzBjXkn748GEX2L/88kvr3LmzNWnSxF588UXXsj5kyBDbtGmTTZo0yXbv3u32UeeN7tevn/v39ddftzvuuMPef/99q1SpUhY8OzkPARsAAKSQnJRkUXlocgOAk0GBeceOHS7EPv30026ZWsZVQb7rrrusRo0arkqtSdA0JltVZc+5555r7dq1sw8++MAF3Yzeb3CAf+mll6xatWoueHunrYqNjXUhXlX2N99804Xut99+28qVK+euv+KKK6xZs2ZuHYV/ELABAEAIheutMyZZ/M4tkd4VAAjraFxBO1q1nsXv3m5RMTk/0nRqe6u1bX6tfbNosS364Udb8uPP9tFHH9nHH39sPbt2sQrly1t8fLxdU/9SO7Jjs7tNnrwxVrt2bRd2Nft4RgO2wrRHVWy1ej/88MMpzgmt8KyLfP/99+42pUuXtqNHj/5vH/LkcSF71qxZPj0TOV/OfzcCAADfKVwf2boh0rsBAGElFixqyYlHLflogiVbsuUGhfPns+saXuEusuKPNdZn0As2cuwEG9DjUbesRJEilpyQ4H72Rmyffvrp9s8//2T4/jTG26MKucaBlyhRIs31Vb1ev369nX/++WGvP3TokGsbP9URsAEAAAAgArbt2Gl3dH7IHrznbmt5/f9NZibVzq1sD3dob4/0G2gbNv+var1z9x47u8KZKdZTe/mZZ/5vmarPiYmJKa4/ePDgcfejUKFC7rYaZx3syJEjtnDhQjehWeHChd3kZjqFWDhqJweziAMAAABARJxe/DSLjo62dz78yI7Ex6e6ft2GjRYXG2utW9xksTExNueLL1Ncv3TpUjezt2YCl4IFC9qePXtcMPb88MMPx90P3U7t35roLNjXX39t999/v23fvt2F67Vr11rFihXtggsuCFw+/PBDN8mZHgeoYAMAAABARCiUPtm9qz3Sb4C1eaCLtb75JjunQgU7fOSwfb/0B5s2Y5Z1ua+9FStaxO5te7tNeOPf7lzZV9ara5u377CXJ79ulStXtptvvtltT6fd0mRkTz75pLVq1cpWr17tzrOdnvDbtWtXN4u4TsPVokULN7HZiBEj3Pm4zzvvPGvfvr0L0/r33nvvdROx6bRhmsG8d+/eJ+HZyhkI2AAAAAAQIVfUq2tvjR1tr73znr361lTb8/dei42Nsarnnmsv9H/Srrqivluvc/u7rETx4vb29A/tg49nW7EiRdws4N27dw+Mp9a5sXv16uVC9qeffurGS2tWcJ1e63gUzsePH+/W79KlixUvXtxuuOEGN/GZaHIznTt7+PDhNmDAAFclP/vss23QoEEuzON/opI1mv0UtWzZMvevWhsAAMD/+euVZ5nkDEC2nuQsvt6Ndla5shaX99SsGUbFxFhcyTMivRu5wuHDhwPt7+HOJ56R3MgYbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwMZJk5SYFOldAAAAAIAsc2rOaY+IyBOdxz7pMdt2/Xd3pHcFAJCGig3Otgbd/3fOVQAAkDEEbJxUCtfbl2+P9G4AANJQvGLxSO8CAAA5Fi3iAAAAAAD4gAo2AAAAgNwjOtqi8kRH5K6TkxLNEhMjct/IHqhgAwAAAMgdoqMttkRZiysZmYvuW/twMnw45z9WpUoVW7VqVdjrf/jhB3f9jz/+aBs3bnQ/L1q0KM3t6Xpd5s6dG/b6++67z10/ffr0E9rvKhnchh/3eTJRwQYAAACQK6hynSdvdEQm1i1xTnG7fmgztw/JJ6GK3bRRQ3th1Mv20UcfuRAaaubMmVapUiW76KKLXMBOj5iYGPv000+tadOmKZbv2bPnmOEc/4eADQAAACBXORUm1s2fL581a9bMPvnkE3vssccsKioqcN2RI0fsP//5j3Xu3DlD26xXr559+eWX7vZxcXGB5apq16pVy5YsWeLrY8iNaBEHAAAAgAj5ZtFia/NAF6t77Q3W8OZbrd/zQ23fP/8Erv9r0ybr9uRTdnnzFnbFTbdYr2cG2649e9x1rVq1ss2bN9vSpUtTbPPzzz+3Q4cOWYsWLTK0Lw0bNrSkpCRbsGBBiuWzZ892YT7UV199ZbfddptdeOGFVr9+fXvuuefs8OHDgeu3bt3qQr6uv+KKK1y1PZQCfcuWLa1GjRp29dVX24svvmjx8fGWUxGwAQAAACAC9uzda4/0G2gtrrvGZrz2qo18eoD98OsyGzH+FXf9vv377d5uj9mR+Hh7ZfgQmzDsBduweYv1HDjIXV+zZk0799xzUwVXtYc3btzYihfP2KkX8+fP70L2nDlzAst27tzpxnFfe+21KdadN2+eC89aX2OkBw4c6IL4o48+6q4/evSodejQwbWXv/XWWzZq1CibNGlSim18/fXX1r17dxfSP/74Y3vqqafcfffo0cNyKlrEAQAAACACtu3YafEJCVamdCk7o0xpdxk96GlL/P9juD/94ivbf+CgDenfx4oULuyWDXj8EZvzxZeuyqsm7ltuucXGjRtnffv2tdjYWBeIv/nmG7csM6677jrr3bu32762p1bzOnXqpArrEydOdBXnBx980P1esWJFS05Oti5dutiaNWtsy5Yt9scff7ggXqFCBbeOKtzBVfXx48e7cN26dWv3u9ZTUL/77rvduPHy5ctbThPRCrbaD0aPHm0NGjRwPf0dO3a0DRs2pLl+QkKCDR8+PLB+u3btbMWKFSd1nwEAAADAD1UrV7LrGjeyrn3621WtWlvf54bYf9f/ZZUqnu2u/2PtOjvrzPKBcC3nVTrHunW8z4Vfuemmm+zgwYOuGiyqZpcsWdJlpsy48sorXVD22sRVlb7++utTrbd69Wo3gVqwOnXqBK7TpWjRooFwLdWqVbN8+fIFfl++fLm9/fbbroXcu3Tq1Mld9+eff1pOFNGAPXbsWJs6dao988wzNm3aNBe41UaQVs/9gAEDXPvB4MGD7YMPPnBHURTK/wkaowAAAAAAOcXz/Xrbh69Psvatb7O/9+6zPoNfsM49ervrYvIe/5RfykSNGjUKtInPmDHDbr75ZsuTJ3NRTwFY7eWqXGsM9e+//+4q1aEUwkMlJSW5f/PmzesmXfN+D6brgtdX/lNLu3f58MMP3aRqtWvXtpwoYgFbIXry5MnWtWtX17dftWpVGzlypHsRw517TZVthepBgwa5ozGacv7ZZ591R25+++23iDwGAAAAAMisX5evsKEvj7OzK5xp7Vq1tDHPP2sDezxqi3/62U1kds5ZZ9n6DRvtn/0HArdZsfoPNxna1u07AsvUJq4Jx5YtW+Yqx/r9RKhN/IsvvnCh/fLLL7fCQRV0j3eO7WBL//9ka8pqqlarEKo2cc+6dets//79gd81fnzt2rV21llnBS7Kg0OGDLEDB/7vMeckEQvYK1eudE+apoL3FClSxKpXrx52+vdvv/3WvbCafS54fb3wwdsAAAAAgJygUMGCNm3mRzZywqtutvA/1q61T7+abxXKl7PTiha1Zlc1tqJFCtuTz71gq//8ry1ftdqeGTnazq1Y0cqUKhnYjgqQykbq+L300kvtzDPPPKH90vZUodYY6XDt4aLKswqj6kpWSNZs4M8884yrpitg161b103C1rNnT/v5559d+NfPwZV1dSPrvNtjxoxx2/j+++/d+G8Fc7W550QRm+RMRyakbNmyKZaXKlUqcF0wPeF6o+hF1ID6bdu2uTD+xBNPuBcws/TG0ZgFZC21iGhWQgAAACCrlTineI64z3POqmAjnu5vE15/y96ZOcuio/NY7Qtr2djnB7kgqnNdjxvynA0bO97ufKib5Y/LZw0urWOPdX4gsA2vDVuThyknDR06NDBJWug6+jf0utD1dL3auNUm/tlnn7kCZ/BtvHWuuuoqGzZsmE2YMMGFbLWqX3/99fbQQw8F1tdEa+pAvvfee13r+f333+8mL/O2odZzzbGl/VaY15htBXSd1zvcfWYVbVv3oVObhWtrV2YMPs/4sUQlh2uePwnUW68jGJqkLPgohpZt377dXnvttRTrP/nkk24cQLly5dw6OkKjF0xtCRp4X6JEiQzvg46i5ORzrOUkCtc6IPLGLW/Z9uXbI707AIA0VL2+qjUf1sz+euVZO7I17YlHASCSEgsWtfh6N9pZ5cpaXNCYXouOttgSZS1POsYuZ4Wko4kWv2uLEluW31dUTIzFlTwjzVCI9Dty5IgbkqxTi6VFQ5MvuOCC7FvB9maPU8ANnklODy5cpVNHUdSvr3HaXsVaP2uWOw3kV4tCZsTExFjlypUz/TiQPuk94gMAAABkWuL/Am5UnsgE7OSkxJMSroPFxcWFnXAMGaO8qRnP9XyG0mnH0r0dixCvNVzV6uCp2/W7BsyHKlOmjHvQwe3gCuZqG1ebwYkEvwIFCmT69gAAAACykcRESz7JITeSMjtbOP5PdHT0/1ry8+dPUfzNTLEwYq+GZg0vVKiQLVq0KLBs37597lxo4aZk1zKV7NXW7Tl8+LAr5Wu2OQAAAAAAIiliFWz1sLdr184NjNeAeI2t1oB8VaqbNm3qBprv3r3bzRyuowiXXHKJXXbZZdarVy97+umnrVixYjZ69Gh3tEEnVwcAAAAAIJIi2k+gc2C3atXK+vbta23atHFhedKkSW5c9JYtW6x+/fpuAjPPSy+9ZHXq1HEz0+l2GpP9xhtvuIAOAAAAAMApWcEWBeoePXq4S6jy5cvbqlWrUixTS7nO7aYLAAAAAADZCSPiAQAAAADwAQEbAAAAAAAfELABAAAAAMjpY7ABAAAAwFfR0RaVJzoid52clOjOw50R17W+0zZv25binMsF8ue3qpUrWZd777aLa9ZIsf6s/8y16bP/Y2vWrjWLymPnnnuutW/f3q655ppU205KSrLGjRvbzp077euvvz7m5NA6ffJdd92VYlnBggXt/PPPt8cee8xq1aplJ8v06dOtd+/egTm59Bhuvvlme/jhhy27I2ADAAAAyB2ioy3u9LIWFR2hgJ2YaEd2bslwyL7rtlZ29+2t/reN5GT7e98+e+nVKfZgrydt5uuTrGzpUm55z4GDbPFPP1un9nda/56PWVyJ0jZ37lx75JFHrHv37nb//fen2O53331ne/futRIlStj777+f6vpw3nvvPStbtqwL57rtW2+9Zffdd5/NmTPHSpUqZZHw/vvvW1xcnOUEBGwAAAAAuYIq1wrXW2dMsngF3ZMo9vSyVubm+9w+KGhnRIH8+ez0oOpyyRIlrO8j3ezqW9vYFwu+tTta3WzvfviRfb7gG/v3uJes2nnnWlRMjMWVPMM6d+5siYmJNnr0aGvevLmdccYZge188MEHdvHFF7szNCk4d+zY0VXIj0VV7pIlS7qfS5cubf369bOPPvrIBfl27dpZJBTPQadlJmADAAAAyFUUro9s3WA5WXT0/6bLiomNcf++O+tju6JeXReuQ91999126aWX2umnnx5YpurzZ599Zo8++qhVrVrV3n77bfv222+tfv36GdqPvHnzWmxsbIplS5cudYH+t99+s/j4eDvzzDOtU6dOdtNNN7nrd+3aZQMHDnRt54cOHbLq1au7/ahTp467XrcZNWqUzZo1y/bv3+/a3Lt27ZrmvgW3iL/00kv2ww8/2GWXXeaq63v27LGaNWu6+6tUqZJb/59//rEhQ4bYvHnzLCEhwbW569TQF1xwgWU1JjkDAAAAgGxk246d9vyoly1/vnzWoG4dOxIfb2vWrrNa/zo/7PqFCxe2Sy65JEUQ/vjjj1241NhsBVu1iU+bNi1D+3HkyBF75ZVXXLt406ZN/7dv27a5lnGF1RkzZtjMmTOtRo0a9uSTT7qx3jJgwAB3WwVgVb8rVqxoDz74oB08eNBdr/HVCvvDhg1z27juuutcQP/qq6/StV8K+ArZEydOtKlTpwYCvaiVXpX6DRs22IQJE+zdd99148fbtGljy5cvt6xGBRsAAAAAIujVf0+z19953/2sdu/4hAQ756wKNmxAXzf+eseuXe66IoULp3ubag9XsPRaxhViFbC3b99+zLHUajNXG7mC6uHDh92/jz/+eOA2Cs6qJCtke+3mGtutoL1u3TpXRf/rr7/svPPOc5XtfPnyufB9ww03WHR0tK1fv96Ff61frVo1d/t77rnHVq5caZMmTbKGDRse97EdPXrUVaiLFi3qfm/durUNHTrU/bxw4UL7+eef3b/FihVzy1Q9//HHH+2NN96w559/3rISARsAAAAAIujWG663tre0cD/nyZPHihYuYoULFQxcX6xIERdmNflZeiis/v7779a3b9/Asuuvv95VlDUWu0uXLmneVlVhjb2WAwcO2OLFi12lWVQZrlChgrVs2dKF1dWrV7swrfvzDg7IQw895FqyP/30UzcGXK3fCu6aqMyrIrdt29aCqdpepEgRSw+FeC9cexV83V70uHVQoFGjRiluo7Z0HRzIagRsAAAAAIigokUKW4Vy5dK8PiYmxqpXOc9+/u33sNfv27fPhVpd1A6u01zJ4MGD7bnnnks1I7cmRlOQD0cVb02K5tH46TVr1rjqsgK2flY41rhmjYNW6/hpp51mt956a+A2V199tS1YsMBdNJP5lClTbMyYMa5dW+FX/v3vf7vTgAVLa59ChY4JD6Z29kKFCgWeg/Tezi8EbAAAAADI5m65/jobNHK0rVj9R6qJzlRN1rhkBWNVcjV5mKrGvXr1SrGeTrU1duxYmz9/fqoK77EoFHvBWG3mGs+t0Oz54osvAuvFx8fb8OHD3YRnzZo1cxe1ml9++eVujLXXAr5jxw4X3j0jR450Abtbt252ItSaronT9DxUrlw5sFzVfE32ltUzoTPJGQAAAABkczc3u9Yuq1Pb7n/8CXtn5ixbv2Gja83WWOSXX37Zevbs6arPX375pZtZW+OaFTaDLxo3rerusSY72717twu/umzZssW1lCuw33jjje76MmXK2NatW11I37Rpkzt9lyY1k/j4eFclXrZsmTu9l8ZCb9y40VWTNcHZhRde6GYMV7h/6qmnXDDXZGSaSE0Tkqn9/EQ1aNDAje3WucE1DltjvlXF1z54s4xnJSrYAAAAAHIVnZM6t92nqrsvPjvA3p4+0z74ZI6NemWy5Y2JcYFV7ddNmjRx6ylIatZuVYxDKVyrlfv111+3zZs3pzhntie41Vut6eXKlbN77703MG77rrvusv/+978u0CtQn3322W4SMZ22a9myZXbFFVe4arRCrVrRdcqsc845x43j1kznout16d+/vzudmIL1oEGD3Km4TpQmUps8ebKb9Kx79+7uNGEK1nqO6tWrZ1ktKtmr9Z+C9AaQk3E+NPzPG7e8ZduXb4/0bgAA0lD1+qrWfFgz++uVZ3P8OWQB5F6JBYtafL0b7axyZS0ub1DNMDra4k4va1HR0RHZr+TERDuyc4tm+8ry+4qKibG4kqkDMjJOLexr1651ByY06/mJ5EYq2AAAAAByh/8fcKPyRChgJyWelHCN7IuADQAAACD3SEx0lWQgEpjkDAAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAA5Ein7vmQ4Cc/T6xFwAYAAACQo+Q5ctCSE4/a4YSjkd4V5AIHDx4MnPf7RDGLOAAAAIAcJepogkX/tdJ2xMaZWXHLF5PXoqLslBJlUZZ8+HCkdyPHV64PHjxo27dvt2LFilm0D+dPJ2ADAAAAyHFi//zJ4s1sW4WqFhV96sUaPea8ew9EejdyhWLFilmZMmV82dap904EAAAAkOOpYB3350+WvO43S8pXwE41saeXtTNu6xzp3cjxYmJifKlcewjYAAAAAHKsqMQEiz6w1041eQsXsXz58kV6NxCCSc4AAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAMjpATspKclGjx5tDRo0sFq1alnHjh1tw4YNaa4/a9Ysq1KlSqrLxo0bT+p+AwAAAAAQKq9F0NixY23q1Kn2/PPPW5kyZWzo0KHWoUMH++ijjyw2NjbV+qtWrbI6derYiBEjUiwvXrz4SdxrAAAAAACyUQU7Pj7eJk+ebF27drWGDRta1apVbeTIkbZ161abO3du2NusXr3aVaxLliyZ4hIdHX3S9x8AAAAAgGwRsFeuXGkHDhywevXqBZYVKVLEqlevbkuWLAl7G1WwK1WqdBL3EgAAAACAbB6wVamWsmXLplheqlSpwHXB9u7da9u2bbOlS5faDTfcYPXr17cHH3zQ1q5de9L2GQAAAACAbDcG+9ChQ+7f0LHWcXFxLkyH+uOPP9y/ycnJ9txzz9nhw4dt3Lhx1rZtWzdm+/TTT8/Ufmh7Bw8ezNRtkX5RUVGWP3/+SO8GAAAAkKsoVynTIOvo+VWeydYBO1++fIGx2N7PcuTIkbBB7JJLLrHvv//eTjvttMCDGzNmjBu/PX36dLv//vsztR8JCQm2YsWKTD8OpI9eU7X/AwAAAPCPOnq94iWyTrhJuLNVwPZaw7dv324VKlQILNfvmsgsnNDZwhXaypcv71rHMysmJsYqV66c6dsjfdJ7xAcAAABA+lWsWJEKdhZbs2ZNuteNWMDWrOGFChWyRYsWBQL2vn37bPny5dauXbtU67/zzjvu9FxffvmlFShQwC3bv3+/rVu3zlq1anVCwc/bHgAAAADkJAzDzF7FwjyRLLErSA8bNsw+//xzN6v4I4884s6H3bRpU0tMTLQdO3a4sdZyxRVXWFJSkvXs2dONx162bJk9/PDDrqrdsmXLSD0MAAAAAAAiG7BF58BW9blv377Wpk0bdz7rSZMmubbtLVu2uJnCZ8+eHWgpf+2119yEZFq3ffv2VrhwYXvjjTfcxGgAAAAAAERSxFrERYG6R48e7hJKY6t13utg559/vk2ePPkk7iEAAAAAADmggg0AAAAAQG5BwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAACBSATsxMdG++uore+2112zfvn32yy+/2D///OPH/gAAAAAAkCPlzegNtmzZYvfdd5/9/ffftnfvXmvSpIm9+uqr9tNPP9mkSZOsSpUqWbOnAAAAAADkpgr2008/bRdffLEtWLDAYmNj3bIRI0bYZZddZs8++2xW7CMAAAAAALkvYC9dutTuvfdei46ODiyLiYmxBx980H777Te/9w8AAAAAgNwZsPPly2e7du1KtXzt2rVWqFAhv/YLAAAAAIDcHbBbt25t/fv3d5OcecH6gw8+sH79+lmrVq2yYh8BAAAAAMh9k5x16dLFihQpYgMGDLBDhw7Z/fffbyVKlLD27du7yc8AAAAAADgVZThgf/zxx3bDDTfYnXfeaQcPHnSn7CpcuHDW7B0AAAAAALm1RXzgwIG2e/du93OBAgUI1wAAAAAAZCZg161b11Wx4+Pjs2aPAAAAAAA4FQK2ZhAfO3as1apVy+rXr29NmjRJccmIpKQkGz16tDVo0MBtr2PHjrZhw4Z03XbWrFlWpUoV27hxY0YfAgAAAAAAkR+Dfdttt7mLHxTUp06das8//7yVKVPGhg4dah06dLCPPvrIYmNj07zdpk2b7Omnn/ZlHwAAAAAAiEjAvvnmm92/mkF8/fr1rgpdoUKFDJ8DWy3mkydPtscff9waNmzolo0cOdJVs+fOnWvNmzcPezvdX48ePez888+3hQsXZnT3AQAAAADIHi3iCQkJNnjwYKtdu7YL2y1btrRLL73UevfunaFx2StXrrQDBw5YvXr1Ast0+q/q1avbkiVL0rzd+PHj3T488MADGd11AAAAAACyT8B+4YUX7Msvv7Rx48a5ILx48WJ7+eWXbenSpa4CnV5bt251/5YtWzbF8lKlSgWuC/Xrr7+6qrdayaOjozO66wAAAAAAZK/zYI8aNcrNJu658sorLS4uzrV79+rVK13bUYu5hI611nb27t2ban2dc1vb1+Xss8+2bdu2mR+Sk5PdtpG1oqKiLH/+/JHeDQAAACBXUa5SpkHW0fOrPJMlAVsbL1GiRKrlxYsXdy3f6ZUvXz73r9rKvZ/lyJEjYYPYs88+axUrVrTWrVubn9RuvmLFCl+3idT0mqr9HwAAAIB/1q5dGyheIuscaxLuEwrYGm89bNgwd/EmNtu3b5+NGDEiRVX7eLzW8O3bt7tJ0jz6XaffCvXBBx+4B3XhhRe63xMTE92/mgytU6dO7pIZMTExVrly5UzdFumX3iM+AAAAANJPRUgq2FlrzZo16V43wwG7T58+dtddd7nZvvViekdNypcv7yYgS6+qVau6gL5o0aJAwFZQX758ubVr1y7V+ppZPNgvv/ziZhOfOHGinXfeeXYiwa9AgQKZvj0AAAAARArDMLNXsTDDAbt06dJuHPaCBQvszz//dGOmFbQvv/xyy5Mn/XOmqRqtIK1KuNrLy5Ur5yYv0/mwmzZt6irUu3fvtsKFC7sW8rPOOivF7b2J0M444wwrVqxYRh8GAAAAAAC+ynDAlnfffdeKFi1qHTt2dL936dLFNm7caG3atMnQdrp27WpHjx61vn372uHDh92pvyZNmuTatrW9Jk2a2HPPPedOBQYAAAAAQK4K2DoVl8ZDP/3004FlGns9duxYV3FW2E4vnWpLbd66hFLL+apVq9K8re7zWNcDAAAAAJCtz4OtcP3iiy9a48aNA8s0Jlut3u+8847f+wcAAAAAQO4M2JoC3ps9PNhpp51m//zzj1/7BQAAAABA7g7Ymj180KBBtnnz5sCybdu22QsvvGD169f3e/8AAAAAAMidAbt///6WkJDgJiDTObF1adiwoSUlJdlTTz2VNXsJAAAAAEBum+RMp9SaNm2arVy50tatW2d58+a1s88+2ypXrpw1ewgAAAAAQG6sYHuqVq1qF198sTtf9Z49e/zdKwAAAAAAcmMFWy3hGmOtGcRnzJjhKtbz58+3bt26BU63ValSJXv11VetSJEiWb3PAAAAAADkzAr2xIkTbd68eTZw4EArW7asxcfH25NPPunOVa2g/f3331uZMmXc6bsAAAAAADgVpStgz5o1y01gduONN1pcXJwL1Dt37rT27dtb0aJFLTY21p0Le+7cuVm/xwAAAAAA5NSArVNyacy1RwE7KirKrrzyysAyVbb37t2bNXsJAAAAAEBuCNiaOXzHjh2B39UWXq1aNStZsmRg2erVq1P8DgAAAADAqSRdAbtp06Y2bNgwW7VqlU2ZMsXWrl1rt9xyS+D6Xbt22YgRI6xx48ZZua8AAAAAAOTsgN29e3c31rpFixY2dOhQF67vuOMOd9348eOtUaNGFhMTY127ds3q/QUAAAAAIOeepqtgwYI2ZswY279/v/u9UKFCgesuuugiGz58uAvZefOma3MAAAAAAOQ6GUrEwcHaU6dOHT/3BwAAAACA3NsiDgAAAAAAjo2ADQAAAACADwjYAAAAAABEMmD/8ccfNm/ePDt48KBt2LDBkpOT/dgfAAAAAABypAxP+713717r1q2bLV682P3+6aef2qBBg1zInjhxopUrVy4r9hMAAAAAgNxVwX722Wctf/78tnDhQouLi3PLBg8ebGXKlHHXAQAAAABwKspwwF6wYIE9+uijVqRIkcCy4sWLW+/evW3JkiV+7x8AAAAAALl3DPaRI0dSLdu9e7flzZvhjnMAAAAAAE7NgN28eXM35lqTnEVFRblJztQu3q9fP2vWrFnW7CUAAAAAANlchkvOPXv2tBEjRljLli0tISHBWrRoYdHR0daqVSt3HQAAAAAAp6IMB+zY2Fh74oknrHv37m7m8MTERDvzzDOtYMGCrk08X758WbOnAAAAAADkphbxatWqBYL0ueeea1WrVnXhetOmTdakSZOs2UsAAAAAAHJDBXvmzJk2ffp093NycrJ16dLFYmJiUqyzfft2K1myZNbsJQAAAAAAuSFgX3311bZx40b38+LFi61WrVquah2sQIECbj0AAAAAAE5F6QrYCtMPPfSQ+7lcuXJ27bXXWv78+VOso7HYK1euzJq9BAAAAAAgt43B7tOnjx06dCjVclW427Zt69d+AQAAAACQo6Srgv3ee+/Z+PHjA2Owb7nlFsuTJ2U237dvn1WqVClr9hIAAAAAgNwQsHWua01qlpSU5CrY99xzjxUuXDhwfVRUlGsZv/TSS7NyXwEAAAAAyNkBW+FaIVvKly9vF110keXNm+FTaAMAAAAAkGtleAx2nTp17JdffrGuXbvaTTfdZFu2bLGJEyfaJ598kjV7CAAAAABAbgzYc+fOtfvvv9/NJr527Vo7evSoq2Y/8cQTNnXq1KzZSwAAAAAAclvAHjNmjA0YMMB69epl0dHRbtm9995rgwcPtilTpmTFPgIAAAAAkPsC9vr1661WrVqplteoUcO2bdvm134BAAAAAJC7A3blypVtwYIFqZbPmDHDXQcAAAAAwKkow1OB9+7d2zp16mQLFy60hIQEd35sVbV/++03GzduXNbsJQAAAAAAua2Cfckll9icOXOsUqVK1rhxY/v7779dy/js2bOtXr16WbOXAAAAAABkc5k6mXXJkiWtW7du/u8NAAAAAACnSsC+8847LSoqKs3r33jjjRPdJwAAAAAAcn/Arlu3borfdR7sDRs22Pz5861z585+7hsAAAAAALk3YD/00ENhl0+fPt3mzp1r9913nx/7BQAAAABA7p7kLC21a9e277//3q/NAQAAAACQuyvYmzdvTrXswIEDNmnSJCtXrlyGtpWUlGRjxoyx9957z/755x8X0vv3729nnnlm2PV///13GzJkiP36668WFxdnTZs2tR49eljhwoUz+jAAAAAAAIhswNapuTTJWXJycorlZcuWtcGDB2doW2PHjrWpU6fa888/b2XKlLGhQ4dahw4d7KOPPrLY2NgU6+7cudPuueceu+qqq2zAgAG2Z88e69evnz3xxBP28ssvZ/RhAAAAAAAQ2YD9+eefp/hdYTsmJsZOP/30Y84uHio+Pt4mT55sjz/+uDVs2NAtGzlypDVo0MCN5W7evHmK9Tdt2mT169e3p59+2vLmzWsVK1a02267zd0GAAAAAIAcNwZbbeC6rFu3zoVtheHly5e72cQzYuXKla61vF69eoFlRYoUserVq9uSJUtSrV+zZk0bMWKEC9fy559/2ocffmiXX355Rh8CAAAAAACRr2Bv3brVHnzwQVu7dq2rIicmJtr69evtjDPOsClTpljp0qXTvR2vtTxYqVKlAtel5ZprrnEBX0FfY7gBAAAAAMhxAXvgwIFWokQJF6aLFi3qlmk8tCYbGzRokI0ePTpd2zl06JD7N3SstSYv27t37zFvO2zYMHd7jdm+6667XCW7YMGClhkaS37w4MFM3Rbpp+ED+fPnj/RuAAAAALmKclHo/Fjwl57f9A6HznDAXrhwob3zzjuBcC2nnXaaG0t9xx13pHs7+fLlC4zF9n6WI0eOHDeIXXDBBe5fVa+vvPJKmzdvnrVo0cIyIyEhwVasWJGp2yL99Jqq/R8AAACAf9RZ7BUvkXVCC8O+BWwF63AV5n379rnJztLLaw3fvn27VahQIbBcv1epUiXV+v/973/tr7/+CkyIJmpHL1asmG3bts0yS/tcuXLlTN8e6ZORCfAAAAAApI+G7VLBzlpr1qxJ97oZDtjXX3+99e3b150qy6sk//LLL25272bNmqV7O1WrVrVChQrZokWLAgFbIV0TprVr1y7V+t999507B/Y333zjJkMTBW61p1eqVMlOJPgVKFAg07cHAAAAgEhhGGb2KhZmOGB369bNdu3aZffdd1/gSEl0dLTdeuut1rNnzwyV2BWkNZ66ePHibsIyjanW+bCbNm3qJk/bvXu3FS5c2LWQ67RdEydOdGO91Y6uKvqzzz5rNWrUsEaNGmX0YQAAAAAA4KsMB2wF4+eff9769OnjZvLW76pAZ6YK3LVrV3d6L1XEDx8+bLVr17ZJkya5tu2NGzdakyZN7LnnnrOWLVu6VvDXX3/d3XebNm1cqNf1TzzxhPsZAAAAAIAcFbBl//79LlxrgjJNSvb7778HrlNITi8FY1WkdQlVvnx5W7VqVarxBRMmTMjMLgMAAAAAkL0C9scff+yq1wrX4XrTmZEbAAAAAHAqynDAHj58uBs7/eCDD7pJygAAAAAAgFmejN5As3a3bduWcA0AAAAAwIkE7MaNG9u8efMyejMAAAAAAHK1dLWI9+7dO/BzQkKCOx/13Llz3ezhefKkzOia9RsAAAAAgFNNhsdgqzW8RYsWWbM3AAAAAADk5oBNVRoAAAAAAB8C9pgxYyy9HnrooXSvCwAAAADAKRWwFy1alK6N6TzYAAAAAACcitIVsN98882s3xMAAAAAAHJ7wJ45c6Y1a9bMYmNj3c/HwgRoAAAAAIBTUboC9ujRo+3KK690AVs/H6tFnIANAAAAADgVpStgf/HFF2F/BgAAAAAAmTgP9s6dO+20006z6Oho9/vy5ctt4cKFVrx4cWvatKkVKFAgI5sDAAAAACDXyJOelQ4cOGCdOnWyBg0a2Lp169yy6dOnW6tWrdwEaBMmTLAbbrjBtm7dmtX7CwAAAABAzg3YL730km3atMneeustO+ecc+zgwYM2aNAgq1Gjhs2dO9fmzJlj9evXt2HDhmX9HgMAAAAAkFMDtkL0k08+aRdffLGbyOybb75xVe0777zTYmJi3DotW7Z0ywEAAAAAOBWlK2Dv2LHDKlSoEPj9u+++c+OwVbX2nH766Xbo0KGs2UsAAAAAAHJDwC5durRt2LDB/ZycnGzz58+3mjVrWtGiRQPr/PTTT1a2bNms21MAAAAAAHJ6wL7pppvcmOvPP//cBg8ebFu2bLG2bdsGrl+5cqWNGDHCrr322qzcVwAAAAAAcvZpujp37mz79++3Pn36uDHYXbt2tebNm7vrXnjhBZsyZYo1bNjQrQcAAAAAwKkoXQE7b9681rt3b3cJ1aJFC3eKrurVq2fF/gEAAAAAkHsC9rFUqVLFnz0BAAAAACC3j8EGAAAAAADHRsAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAcnrATkpKstGjR1uDBg2sVq1a1rFjR9uwYUOa6//xxx92//33W926da1evXrWtWtX27x580ndZwAAAAAAsl3AHjt2rE2dOtWeeeYZmzZtmgvcHTp0sPj4+FTr7tmzx+655x7Lly+fvfnmm/bKK6/Y7t273fpHjhyJyP4DAAAAABDxgK0QPXnyZFeFbtiwoVWtWtVGjhxpW7dutblz56Za/7PPPrODBw/akCFD7LzzzrN//etfNnToUPvzzz/txx9/jMhjAAAAAAAg4gF75cqVduDAAdfq7SlSpIhVr17dlixZkmp9raeKtyrYnjx5/rf7+/btO0l7DQAAAABAeHktQlSplrJly6ZYXqpUqcB1wcqXL+8uwSZOnOgCd+3atTO9H8nJya4yjqwVFRVl+fPnj/RuAAAAALnKoUOHXKZB1tHzqzyTrQO23ggSGxubYnlcXJzt3bv3uLfXOOy33nrL+vbta8WLF8/0fiQkJNiKFSsyfXukj8K1uhMAAAAA+Gft2rWBbIWsE5pbs13A9lq9NRY7uO1bE5Ydq9KpowejRo2ycePGWefOne3OO+88of2IiYmxypUrn9A2cHzpPeIDAAAAIP0qVqxIBTuLrVmzJt3rRixge63h27dvtwoVKgSW6/cqVaqkWW3u3bu3ffzxx+7f9u3b+xL8ChQocMLbAQAAAICTjWGY2atYGLFJzjRreKFChWzRokWBZZqsbPny5WmOqe7Zs6f95z//seHDh/sSrgEAAAAA8EveSPawt2vXzoYNG+bGUJcrV86ddqtMmTLWtGlTS0xMdOe5Lly4sGshnz59us2ePduF7Dp16tiOHTsC2/LWAQAAAAAgUiJWwRadA7tVq1ZuorI2bdpYdHS0TZo0yY2L3rJli9WvX9+FalFbuOg82FoefPHWAQAAAADglKtgiwJ1jx493CWUTsm1atWqwO+TJ08+yXsHAAAAAEAOqWADAAAAAJBbELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAAyOkBOykpyUaPHm0NGjSwWrVqWceOHW3Dhg3pul2HDh3spZdeOin7CQAAAABAtg7YY8eOtalTp9ozzzxj06ZNCwTn+Pj4NG+j6/r06WMLFiw4qfsKAAAAAEC2DNgKypMnT7auXbtaw4YNrWrVqjZy5EjbunWrzZ07N+xtfvzxR2vZsqUtXbrUihQpctL3GQAAAACAbBewV65caQcOHLB69eoFlik0V69e3ZYsWRL2NvPnz3ft5DNnzrTChQufxL0FAAAAAODY8lqEqFItZcuWTbG8VKlSgetCPfLII77vR3Jysh08eND37SKlqKgoy58/f6R3AwAAAMhVDh065DINso6eX+WZbB2w9UaQ2NjYFMvj4uJs7969J20/EhISbMWKFSft/k5VCtfqTgAAAADgn7Vr1wayFbJOaG7NdgE7X758gbHY3s9y5MiRk1rpjImJscqVK5+0+ztVpfeIDwAAAID0q1ixIhXsLLZmzZp0rxuxgO21hm/fvt0qVKgQWK7fq1SpclKDX4ECBU7a/QEAAACAXxiGmb2KhRGb5EyzhhcqVMgWLVoUWLZv3z5bvny51a5dO1K7BQAAAABApuSNZA97u3btbNiwYVa8eHErV66cDR061MqUKWNNmza1xMRE2717t5stPLiFHAAAAACA7ChiFWzRObBbtWplffv2tTZt2lh0dLRNmjTJjYvesmWL1a9f32bPnh3JXQQAAAAAIHtXsEWBukePHu4Sqnz58rZq1ao0b/vFF19k8d4BAAAAAJBDKtgAAAAAAOQWBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAfEDABgAAAADABwRsAAAAAAB8QMAGAAAAAMAHBGwAAAAAAHxAwAYAAAAAwAcEbAAAAAAAcnrATkpKstGjR1uDBg2sVq1a1rFjR9uwYUOa6+/Zs8cee+wxq127ttWpU8cGDhxohw4dOqn7DAAAAABAtgvYY8eOtalTp9ozzzxj06ZNc4G7Q4cOFh8fH3b9rl272vr16+21116zUaNG2fz5823AgAEnfb8BAAAAAMg2AVshevLkyS40N2zY0KpWrWojR460rVu32ty5c1Ot/9NPP9nixYvthRdesPPPP9/q1atnTz/9tH344Ye2bdu2iDwGAAAAAAAiHrBXrlxpBw4ccEHZU6RIEatevbotWbIk1fpLly61kiVLWqVKlQLL1CYeFRVlP/zww0nbbwAAAAAAwslrEaJKtZQtWzbF8lKlSgWuC6Yqdei6sbGxVqxYMduyZUum9iEhIcGSk5Pt119/zdTtkTE6GFKl67l2bsL/HSQBAGQvefPltWXLlllijcaWfH5ipHcHAJCGA9HRtnfZMpdnkLWUG5VlsnXA9iYnU0gOFhcXZ3v37g27fui63vpHjhzJ1D54T1J6nyycuALFC0R6FwAA6RBdoHCkdwEAkA5kmZPzHGf7gJ0vX77AWGzvZ1FYzp8/f9j1w01+pvULFMhcaLvwwgszdTsAAAAAALLNGGyv3Xv79u0pluv30qVLp1q/TJkyqdZV4P77779dWzkAAAAAAKdkwNas4YUKFbJFixYFlu3bt8+WL1/uznMdSss0Nlun6fJoVnG5+OKLT9JeAwAAAACQzVrENZ66Xbt2NmzYMCtevLiVK1fOhg4d6irVTZs2tcTERNu9e7cVLlzYtYfXrFnTLrroInvkkUfcua8PHjxo/fv3txYtWoSteAMAAAAAcDJFJUdw2jmF6BEjRtj06dPt8OHDrkqt0Fy+fHnbuHGjNWnSxJ577jlr2bKlW3/Xrl02cOBAW7BggZvc7Nprr7XevXu7nwEAAAAAOGUDNgAAAAAAuUXExmADAAAAAJCbELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwQV4/NgIAyHqzZs2yt956y1avXm1RUVF2zjnn2K233mqtW7d217/00ks2Y8YM++KLL9zvTzzxhG3atMnefPPNsNvbuHGjNWnSxN544w2rW7duquurVKlizz33nLVs2TKwbNu2bTZ+/HibP3++bd++3YoXL26XXHKJ3XfffXb++ecH1lu0aJHddddd9vnnn1v58uWPeb/eumm54447rH///m5/juXmm292j3fx4sVprlOuXDn3/Oi50XOVlvfff98uuOACS4/4+HibOHGiffzxx+6x5c+f32rUqGEdO3a0Sy+9NMW6Bw8etClTpticOXPcuoUKFbKaNWvagw8+mOL5k8OHD9vrr7/utvvXX39Zvnz5rGrVqu75aNq0aYp1wz03Wl+PV++P4Oe3cePG7nkKp0CBAvbTTz+l63EDAIDUCNgAkAMo8A0aNMiefPJJu/jiiy05Odm+/fZbe/bZZ23nzp320EMPZfk+rFixwu655x6rVKmSDRw40AV8Be5///vfdvvtt7swfsMNN2R6+++9956VLVs21XIFVvnmm28Cy2bPnm2DBw9OsUyBMjEx0RISEtzvW7ZscQcgdODhwgsvdMuio6MD62uZrgvntNNOS/d+9+3b13799VcX2itXrmz//POPTZs2ze69916bNGmS1atXz623e/duF47z5s1rDz/8sFWrVs327t1rr732mrVt29aFdO9Ax/79+10o/vvvv61r167uNVc4//TTT+3RRx+12267zR10CNanTx9r1qxZ4Hfd39tvv+3eN6effnqK67RvuoTKk4fGNgAATgQBGwBygKlTp9ott9xirVq1CizzAq4qwVkdsI8ePWrdunVzVV1VsL2gqgrpRRddZKVKlbJ+/fpZrVq17Mwzz8zUfagaXrJkyTSvD76ucOHCqZaFOnLkiPu3aNGiYdeLiYk55u3TQ0FYnQUK6g0bNgws1wGIlStXuoMPXsDWMu3TO++8Y0WKFAmsO2zYMGvfvr0NGDDAPvnkExdyFYp37dpl06dPtxIlSqSoVKs6/sADD7jQff3116d4ToIfj35+6qmn3EEIHZAIDtiqVJ/oYwcAAKlxqBoAcgCFLrXuquIZ7P7773eBLaupJXz9+vXWvXv3FFVgj8K32tZPxr5kx9dGIVYHIYKNHj3aHXQQdRnMmzfPVaWDw7XoeXv66aftxRdfdD+rav3hhx+60B0crj0K8grtah8/Hm0vNjbWVc0BAEDW439cAMgBOnToYI888ohdccUVro1Y4541vlcV5dDAlhUU7lX1rF69etjr1Z6tSvYPP/xgpxKNoVZ7t8a5z5071y677DKrXbu2+7dChQop2uvVvq7nKJyzzjor8LPazbWuKtRpUcAeOXKka4dXJT4ctZRrzP6ff/5pPXr0OKHHCQAA0oeADQA5wLXXXmtlypRx7eAae62Kspx99tluLPKxwtjxaDKucFXpYKqcK8irIpqWYsWKuYm7Mqt58+Zht6/x5xr37belS5cGxmYH00EEtXZnZAy2WuM/+OADF7I1KZnUr1/fvTalS5cOdB6oXf14vHX1fKZFY8Q1Dn/Pnj2uPV/UDv7MM8+4n3Wd2tE1KZoq440aNUpx+wkTJtjkyZNTbVcVdh3IAQAAmUPABoAcQiFOl6SkJDe+VyFbFUoFZLUfZ5YmStNM1qGCZ6pWoNN442PZt2+fG0ctXkuygl4ob1lo27Im+VIYDRVu4jM//Otf/3Ljn0PFxcVl6uCALpr5W9V+vR7vvvuum8xM/3rPi9q/g6vVx5pgTZOlHSuE62BE8GRsmgxNr5la1TVLuSZY02Ro1113Xarba2bxO++8M9Xyk9ENAQBAbkbABoBsbuvWra7iqImtVMXWmF9VWXW56qqrXLBbsmRJprevUHu80KcKufZBrc6a/TqUqqW//PKLm7U7uFKr0B1KITNchfaMM85IdUqvrKS29uM97uPRKcZ02q/evXsHtqn2bV1UddfYas3mrTCvVu4ff/wx7MGM77//3o2pVgVak5hp3LRe09BTd3l0KjINDwhuD9d4be/xeJPeaeI0vRbBE5yJlp3oYwcAAKkxyRkAZHMKWzqFlWarTqviqNMwZSW1O5933nmu4qvxwaEUvhWyVTH1WtcLFizo2rBDaZy2xi5rnZxOVX2dZksHF0JpVm8Fbj1WvU7XXHONa/EP7QRQR4JmZl+7dq17HbWuZotXBVqTo4UL4wsWLDjmucOlc+fOruNBreM6ZzkAAMh6VLABIJtTe7EmORs1apQdOHDAjcdWaFuzZo2NHTs2MOmZglcoVYu//vrrVMvr1KmToX3QGG2N5dW5k++++27r1KmTq9Du2LHDtUDPnDnTnVrKq4qq/Vvrap/Vcq1JvxTAVXnVKa10+9Bx36r0hmvP1rYycl7q9NIEYdr/cPT8euffPhaNbdZzqTCrdnBNPKcDEMuWLbPhw4e79n0dIJFevXq5CdHatGnj2rk1PlqnWXv11Vft559/dmOivTHompTsjz/+cAcsNEO7JkeLj4+3zz77zMaNG+davI93znE9v3pNWrRo4Srjwef81gRoaT12PdfMOg4AQObwPygA5AA6PZYqvgqzmoBLY33VUq3xtWodT8vq1atdyAv1+eefZ3gfFKhnzJjhAqEC25YtW1y1VQFfp+cKbWdWm7LalrXPL7zwgltWsWJF69OnjzundyivvTzUueeeG5g4zE8aK63KfDg9e/a0++6777jbULu+xo6r2qxzlQ8ZMsRVpPVcKRgHn7dck5HpudD6Q4cOda3/ev4UnvX8KXB7NGP7lClTbNq0aa51XK3eCupqz9dzqWp4elSuXNkdzFC41rjwq6++2i1XmA83yZk3qZzazwEAQMZFJYebgQYAAAAAAGQIY7ABAAAAAPABLeIAAIShce3hJnTzqP1dY6IBAAA8tIgDABDGX3/9FfY83sGTiJ3M04oBAIDsj4ANAAAAAIAPGIMNAAAAAIAPCNgAAAAAAPiAgA0AAAAAgA8I2AAAAAAA+ICADQBALlGlShV32bx5c6rr3n77bXfdSy+9lK5t7dq1y+bMmZPm9dOnT7fGjRuf0P4CAJDbELABAMhFYmJi7Isvvki1XOfsjoqKSvd2hg0bZvPnz0/z+mbNmtn777+f6f0EACA3ImADAJCLXHLJJakC9v79++2nn36y6tWrp3s7xzuLZ758+ax48eKZ3k8AAHIjAjYAALlIkyZNbPHixS5Ue7766isXvAsWLJhi3WnTprk27wsvvNDuvPNOW7VqlVuuNvIZM2a4i9cGrvbyUaNGWd26da1Tp06pWsR//fVXa9OmjdWsWdOuueYa++STT07aYwYAILsgYAMAkIucd955Vrp0afv6668Dy+bNm2dXXXVVivVU5R4zZoz169fPBemLL77Y7rrrLtu7d6/de++9dt1117lLcBv4l19+6cZyP/7446nGa+s21apVc9t64IEHrFevXrZy5cqT8IgBAMg+CNgAAOTCKrbXJh4fH2/ffvutWxbs1VdfdUG4UaNGdvbZZ1v37t2tXLlyNmvWLFfpVgt4aBv47bffbuecc45Vrlw5xbZUrS5atKj17dvXXd+yZUt77LHH7PDhwyfpEQMAkD3kjfQOAAAAfylMd+3a1Y4ePWrff/+9q2qXKFEixTp//vmnDR061EaMGBFYduTIEVu3bl2a21UAD2ft2rVufHeePP933P6ee+7x5bEAAJCTELABAMhl1O4tP/zwg5s9/Oqrr061TmJiovXp08fq1auXYnmhQoXS3G5cXFzY5Xnz8nUCAAChRRwAgFxGgffKK690beIaNx06/loqVqxoW7dutbPOOitwGT9+vP3888/u+oyc0kst5pogLXjmcbWcqw0dAIBTCQEbAIBc2ib+3nvvudbwM888M9X1auF+/fXXbebMmfbXX3+5dvE5c+ZYpUqV3PX58+e3TZs22bZt2457XzfccIP9/fffNmTIENdirhnGP//8c7v88suz5LEBAJBd0dMFAEAuVL9+fTcGO1z1Wpo1a2Y7d+600aNHu381cdm4ceNcNVpuuukm69Kli9144422cOHCY95XkSJFbMKECTZ48GB78803XaAfPny4m1UcAIBTSVRycD8XAAAAAADIFFrEAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAHxCwAQAAAADwAQEbAAAAAAAfELABAAAAAPABARsAAAAAAB8QsAEAAAAA8AEBGwAAAAAAO3H/D2oqyfzYRMdIAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_comparison(\n",
" df_embedding_compare,\n",
" title=\"Embedding Quality: scVI Model vs. PCA Baseline\",\n",
" ylabel=\"Silhouette Score\",\n",
" palette=\"plasma\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "59a4b77a",
"metadata": {},
"source": [
"#### Visualize Prediction Results"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "6aa37027",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9AAAAHkCAYAAADW2sd6AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAb45JREFUeJzt3Qd4FNX6x/E3gdCbiBRpUqRZAGmCNEERFUVRr4IoomDDC3ZFEUEEQVQUULEAIoL87RUUUexSFAsqoiggHZVeE5L9P79z7+RuNpswuwnZDfl+nmcfyOzs7NmZMzPnPW0SAoFAwAAAAAAAQLYSs38bAAAAAAAIATQAAAAAAD4QQAMAAAAA4AMBNAAAAAAAPhBAAwAAAADgAwE0AAAAAAA+EEADAAAAAOADATQAAAAAAD4QQAMAAAAA4AMBNJDPTJgwwerXr+9ezz//fLbrdurUya3Xs2fPqL8vNTXV1qxZY7npwIEDLl2XXXZZ1NvYv3+/bdy4MVfTpTRpn+Wm1157zW335ZdfztXt3nnnnW67q1ev9rVe6Ov444+3jh072q233mq//fab5RWlV9+vdHmUD7RM+SKn+XPhwoVuW+PGjbNYn5+h+7tt27Y2YMAAW7JkySH57hUrVlivXr2scePG1qxZM5s9e/Yh+R7krqefftpXnk1OTrYWLVq4fKR8H3yN93sd0uuBBx7Idl3vfGzfvr0d6nM/EvqtuZ2meDr358+fbwMHDnS/U59p1aqVXXXVVTZv3ryDfnefPn3cd910002+0+tdK0Nfun506dLFRo0aZVu3brV4Elqe8XsfBHJb4VzfIoA8895779nll18e9r3vvvvO1q1bl6PtKzC59tprrWvXrvbvf//b4sXSpUtdelTY6NGjR6yTky/oONauXTv975SUFFu5cqXNnDnTPvzwQ3vxxRetQYMGMUvbhRdeaIUKFcpx/qxTp449+OCDvoKKQ+niiy92QaxHlQMbNmywGTNm2Mcff2yTJk2ydu3a5ep33n777fbTTz+5fVKtWjVr2rRprm4fh8b5559vjz32mL399tt24403WkJCQtj1FEjt2LHDrrnmmojPlWDvv/++CzzCfc+mTZvs66+/jnrbiPzc37Vrl911113uuDRs2NDd0ypVquQqiN944w0XeCtA1jrhrF271gXDJUqUsA8++MD++ecfO/LII32nt3nz5vavf/3L/T8QCNiePXvsl19+cfeGL7/80l566SW37Xjd161bt7YKFSrEOikoYAiggXyqZs2arjZbBR7dbEOp9Uk3Ud1Mo6UARa1a8UY3dxVI4F+bNm1ci0aoJk2a2A033GCPPvqoK9jFwimnnJJr+VMFqe7du1usab+GS8epp55qF1xwgQvyczuA1nmhAngkrVCIvaOOOsq1rH700Ufumh4cfAVTMKWgV5VNOblvqLXu+++/d3k0XKWsgvPSpUtH/R0FXaTn/t133+2C51tuucWuvvrqDJ9RZYmWTZs2zR27Sy+9NGzvAgW+Wk/X8VdffTXTdrJTvXr1sOnV9ymtynfq2RKPVElIRSFigS7cQD515plnupvm3LlzM72XlpbmCkJqmQOyc9ppp1nJkiVt8eLFsU5KgXDcccfZsccea7/++qtt374917arVi516yXwyZ+8oFit0OH8/fff9sUXX1jLli2tRo0aUX+Pd0/Q/SEcVbyqQqtUqVJRfwf8n/uff/65OxbqMh0u6C1SpIjrSl24cGGbPn26u+eH3usV4KoSRq3UxYsXt//7v/9zy3NK3c5F6QWQEQE0kE9pLJxa28IVhL755hvXMn322WdnOX748ccfd4Upb6yVukMH3yg1nqtv377u/xMnTnRdYtVVzOtyppruc845x9W2axsKxEaPHm27d+/O8F1btmyxoUOHupuxxlZpfN3PP/8cNl3qfnrzzTe71hht86STTrJLLrkkw1hOdT0cMmSI+//gwYMzdNXdvHmzjRw50s444ww78cQT3euss85yvzWa8bXZiWQfiLrFjRgxwk4++WS3H1Sj/9lnn0V1bHKTWrQSExPTx1SKxuBp7J1apNW9T8dBhTdRwUz/V4uF9q/e79evn8tz4VqI1aqi36xWguuuuy7sePpwY6DVxVxjQ7V/tb/UYqO8oW7n2eXPrMZAa0iDujYrANF+1f7V57S/g+mzyq+qmFJrkX6jjoG6Ryt/5Qbtbwne5zpf77nnnvS8r9aq+++/P9MYxHDHRulT4VwWLVqUaX6BSH670qB8qjyt9bUfvLGdGiuv80/fp/f1HVqmNKp7qZZ7+cE7TpGeL95Y3a+++sq1fmmcvpfmqVOnZtqX+uwjjzySfs5rv+n4hR4rv/vX+34/43SVl9XlWtvSNjt06OCuSevXr8+wnoIeBTXKTzoP1OVULYsaiuLRZxUEzZkzx+X9UAqsdX5cdNFFlhNqbVRa1eIZSkN+lFeyum/s27fP5Rvv2qT8oXylz0R77kdybA5G+009bZSvwtH+Vx7VWHLRfUX3F/0Or9V4ypQpuRJ8+j33FfxKdvOBHH300fbWW2+5PBDa7V7niY6bKj3UzVrni66D4e4tkfLy8THHHJNh+apVq1yruTdWW/vuvPPOc13Ug+k3Kr9457yuDfqd6mkR6o8//nDXd50b2qYqFHS9UJ7LTugYaO/6r/311FNP2emnn+62p7TqnhB6bkVyPwOC0YUbyKd0I1ahUWNXQ7txv/vuu+6mq8J1KBUerrzySlfo0U3jiiuucJ+fNWuWGwelAoQ+pxuP1lUQo//rVb58eVeI07hrBXQqfOj/KsSq4KcCrgquKtB6hWatoxu6tq3a9wULFrjvDKX09O7d26Vb/x5xxBHuc0qXuqSqZU1BlMY8qYvhK6+8kmGs2c6dO93fGiOo4FStNNu2bXMFlPHjx7sbsQp0uSGSfeBRYUBd6rXvVaBWYcPrcqfjGMmxyU36Lu07FSKDqSupgiMF79qPKtiI9qEKnkqz0qSWFAUdKhjpN3stXCp8qbCvigPvuGp8nrZ3MCrUaN9o/J0K09rHKkyroKP8ownZssqf4cb9K71Kt95XWnQc1PKjwFAFTXWPLFasWPr6ek+FVX2v8pS+880333QBgM63nFD6fv/9d6tatapLj2i7mhhHv0ffp/fUHVvH/dNPP3X/euuGOzYqbGr9O+64w41zV1DjjQmM9Le/8847VqVKFVdhoHSpom758uXuvf79+7sx5jofFSBrEkN9lwruOr6DBg1yhWsdJ41JVyFW16lozhcV0LVdravWN43HVLCtllEviNy7d6/bnrarQrrOF6VZ55YK0sonZcqUiWj/6vcqcD9YK6+uM0qb8qq2rf2qY6J06ru13739qt+ibrUqnGsfqRD/wgsvuHNG++qEE05wv1FByDPPPOOOj/J9sNdff93Kli3rjnVOqVJRv1HnfnA3bi/NnTt3dtelYNrXauFU128FqEq7WsW179St+KGHHnK9oiI99yPN+9lJSkqyc8891+UpnSPB10oN9fjxxx9dutWqq4ohBWwKPL1x56qMHjNmjBv2dNttt1luC3fu//DDD+7Yh+tOH0znXTjKV94xFVV+6LzSflOljB/a96ro9qhiTZXZavmuVauWq3gIPl7qLaF8onNP5Q6dv7of33fffe7erOWiyep0Luo+oXNF54wqkq6//noX3Hrp0z7QuatzW3lJ+0Z5U5WEqiDQdaZo0aIWCeVf3WeVp3Te6B7lDVEKHuLi934GZBIAkK+MHz8+UK9evcAXX3wRWLx4sfv/888/n/7+gQMHAq1btw6MGTPG/a33L7nkkvT3n376abds9uzZGba7efPmQKtWrQJnnXVW+jJ9h9bVd3rmzZvnlk2ePDnD55OTkwPt2rULNGnSJH3ZY4895tZ9/fXXM6w7evRot7x3797pywYMGBA4/vjjAxs3bsyw7scff+zWHT58ePqyl156yS179dVX05dNmzbNLXvvvfcyfH779u2B4447LnD22WcfZM/+Z1+deuqpB10vkn2gNGpdLVdaPPqdTZs2DXTo0MEds0iPzR133OHWXbVqVbZp9db74IMPAv/880/6a+3ate579Hvr168f+PLLL9M/o2X6TPAyeffdd93yZ555JsPyXbt2Bbp27erSuGfPHrfs9ttvd+suXLgwfb3U1NTAoEGD3HKly6N8oGUpKSnub+UX/T127NgM37No0SK3fOTIkVnmzwULFrhljzzyiPt7586dgebNm7u0/f333xm2p+1r3QkTJqQv0996ffPNNxnW9dK4cuVKX+fn9OnTM+zvDRs2BObPnx8499xz3fuvvPJK+mf69esXOOmkkwKrV6/OsC3v9917770HPTbad6HnVLS//c8//wz7m6688spAWlpa+vJrr73WLb/++uszrP/vf//bLfd+TzTnS7du3QL79+9PX75mzRq3/OKLL05fNnHiRLds5syZGbbr5Z/nnnsu4v3r15w5c9xndU4EmzJlSuCcc84JLF26NEOevfnmmzPsO6WlUaNGGfbdH3/84da96aabMmxz2bJlbvmIESMypcPLDwfj7VddO9etW+fO+QceeCDDOueff35g4MCB6dvVsQnd148++miGz+g61rJly0CzZs0CO3bsiPjcjzTvB6cpnN9++819bujQoRmWP/jgg2659qVcffXVLt8pXR5dhy+99NLANddcE4hGNOd+48aNA23atInq+7Zt2xY44YQT3P7XuSQ6Z3QsGjZs6L43O961MquX0qYyRrBRo0a597z8HbrftV892r86vsHWr18fOO2009KvOzondG/WfXDr1q0Z1vXu87ovekLLM6H3Qe83qQyk/RN8j1J62rZtG9X9DAhFF24gH1Pra8WKFTN041ZrmWrQs+qGp9ZptcqoK5tqnb2Xao7VhU419aolz4paJ9TCopaFYGqNUE2vWh28LnCaNbZcuXKuVSCYWrJCqZVYM5QGt6Sr5crbllqzs6MabrVYqiUymH6bWq8P9vlIRLIPPFpX+92j36lWZk2G5nXlzOmxyY5mclUrsvdSlza1vGjbmgHYa2EObs1Ra1wwpU9UWx+cPrVYqGVMrcQaS62af83srVm9g1u21Rqp7scH43UvVWt8MKVHrYrqDuqXxo2q5cNrfQ3dJ2pJCX3ck2awDm3pVzdA7xj7oW7QwftbrS3qtqtz8957701v1VGLh1oc1TqpFpjg/ar9py63ar072LHJzd+u7wxHrVzBXUi9VjGv5TF48iFR74lozxflMbUUBqdLvVKC97/yic4XbwZhj659yieazTia/euHWunl2WefdXldv0E0rEAt715+8fKylgfvO7Vwq9VOecGj1j5d09XFNbhbu1qfJSeThwVTi7CGRQR341bPAbU6ZnXf0D1G+UV5OJiuYzqu6sWiHg2RnPuH4tjUrVvX/Tal1+uqrbylHiUa5uA9aaBy5crumGnIj3630q1roXoG5HQyRb/nvug7g4dyREK9RXTt1bmia4LonNE9UNtUa68fGl6lVnvv9cQTT7iu0bpm6L6qFm2Pluu64uVvb/96w2+C77Pax7ofPPfcc+nDv3Te6Jhq4kpR7xb13NA+0naC84B6YajlOZrzU9vTtcWjeT7UOyf4+uH3fgaEQxduIB9TgUxdjHTTVzcqBdMqEGvMkjcmMpS6Xqo7c2jAFNrVLKsuY95NWgVU3Vz+/PNPd3NUYcgrIOpGqAKTunvppuWN+/Koi1Zotzyto22om7JuqkqDPu/dmP2MS9M29Hl1M1S69HmvIBpupvKc8LsPggt2obyxZRq/pS58uXFssqLuvV7hUWlU+lWYUWE6HFV8qGthMG9ca1ZjDL30qeChArUXSAULtx9CaV8qWArXdVPj1CKhY5PV92rCHRXSvXU8Gosaygvm/BZ2FSx4k/B4n9d2FTgFB1I69sorqjzK7rirUOd1Ywx3bHLrt2f3OJjQ97xHKYUu9/J98Dkb6fmS1TEI3qZ3fQl9pJOCCS+fqHtopPvXDwVpqsjREAJ1SdV3apkqutQV27veeIFD8CPkPJoxPZSCZI2jVtCg7ej6p0BJ3bxz8zFzqvRQF1tdK5Vu3TcUxGbV7VfHTPkluLu/R0NzvN8aybkfTd73Q/tQY6o/+eQTF0yqYlWVOcHBv4YYLFu2zN079dK1RuO1dW1TQOXn/MrpuS/KJ7quKtgPrjDyw+u+rco+L5+JKmHUDVkVNKooO9hvUdo0djxUt27d3L4YPny4q3DVMVD6lSc1tlld4nW9V97w5lMIPj9VOaFKWuUzvfT71WVelTReBaDGPou6nOsVTjSP4/Rz/fB7PwPCIYAG8jkVhDRGSGO6NN5Hrb7hHnXh0Q1ErTmqJc9KdgU1FVq1fdXUqoVBL405VgCo2vXQZ4h6rQDh0hFMY0t1o1ZhXC2wmnhGk4GogOGn5UUFZbVY6uaugpDGS6tgp8KFxjPl5sQwke4DCa1EEG9GVa+Ak9Njkx1VqIR7jFVWwqVX6VPgpRaKrKgVLbtj7+c4aIxoVs/CjVTorLWhFBCHFlxz47sVLIQrlGa1P1SIy+68DQ4Swx2b3Prt2W3ba+UKdbD9lVvnSyid6wf77mj2r18KDrRNBYBqldMEbvotasFUS55+nzdpkd88pQpRTaClFlMF0GqhVauZn7kDIr1vaEy5WmoVQKuVUfsoq0A1u7zk7ePgvOTn3D9Ux0Y9JTR+V/MWKIDWPBj6XQoIPbrP6PnG6v2jQFs9t1RpoYoEHTcF1Vnl99w690WBpHoVacy27ltZ0cR4qgzWmF1VemqcuFrOvcrRcFSprt4M0Y6bVxCqig2VKRToqsJHvQuU71WRovd07HSfVdCuyqNguvfqs9q36p2gXigKknWvV48MtWZ7+Urjpr25QEJFU5nh53yL9H4GBCOABvI5BZpqSVR3PAVfmlQoq254onVUG68bd2gBQTdxTRYTrpXBo8KhPq+Wl9DWir/++ivsM0dDa9fV8qR0elR7rUlt1MKh7orBj1DxOxumJvxQ9zF1n6xXr176chVg1SoS3J0rpyLZB57Qlr7g2nevJTqnx+ZQU/pUa68CU2gNv1pzVGBTgUT7Wi/v9wXzZks92PeoS6nyiFpbQwuS+m61IPnhTQYV7nnm2p9qYQjXWpZX9FtFPQ/CFbq9YRDRFCLj5bdHc7743Xc6r0Jbr1UxoEBDXYO9SYBye/8q3ep6qu/QhFl6KRhQ0KaARj1hNCzFO746bxo1apRpoiO11uqpAl6BXxOn6fqt1kVVOCiQ9pblJlVMKsDRfeP88893E7Hdeuut2eYlVYRoP4Zeg7QfRIGdeo74PfcPVd7X/UPBmIJhHSdtR4Gedw/QcVKa9b3qqaDWfXUp1v1Dk4cp6Aw3kduhoKBeQaUC9qwCaF1X1aKsa6tadUWty6JhChoiEUqVAqog0LZzMvGcV8nh5U9Vuuheru7P6vHm8YZrBN/T1ZNM+1yBtRdcKw9pwjBNXqh97uUBHZPQPKDvVv7MakhJXt3PgHAYAw0cJt241fKhml21UGbXxVcFC9Vka7bXYLoBqkuiCp5eYTRcV0zv0SLBQaroRucVkLxurmoJ0DgzjYEKNnny5Ax/qyCj9VQACw6e1cKkgmjwNrNLlwp2oQGBZrnV9qMdZxZOJPvAo+6rwa0y6nKnwraCZ68rZyTHJha8FgKNmQ6mgqdaJdRdUAUnL09qX4SOsQ099uGo1UgFKvWsCKaZWTWuT2MJs8oHobxn2qqA6n3O8+STT6aPIYwVtYSp9UYtmKHj7VQI1j5V4BmNePnt0ZwvfiifqDLOGyMcvF21qKqS4FDtXwUwakVTcOZRvvdmU/ZaTb05GULzsgIJtVKrAiC0tUw9brQ/9Bvmz5/vzqVD8VxmtUKrEkWVjwp8lV+yonyi66hmTw6mAFUzj2uMqbotR3LuH8q8r32o6616NSkfBI87VhoVvOmaqgoMj/axl0ej6ZEQDVWWKo+o9Tv0uu9dW9X7QBXB3rwF+l2qWFEaNau7KgdCX5ppWq3u6r7up9IynI0bN7rWYwXKXjd9ncvq7h4acHpp985jVf5obgL1pgimYFif9R6fqLHUmpVc98LQR9/pWq/7itdVPVb3MyAcWqCBw4ACVRXG1JXwYI9q0gReKpTppqFaVtV6a6Ih1VTrXz2OxGth8MY2qtuWglvd6FXbrb/1mCG1uqg2WoUf7xEoKmRpO7pJqqZZXQQffvhh1yKh2n61KKuGP7hmV7XUKkjoZq3WG7XqqPVRhQR9TjdabdPjpUutzQq01NVR6dLzk1WoVa2+lusxKNonSpduilp2sK5dKiColTOr7lzafiT7wKNumOqmpoKcvkOP91Dgp+7aXiAYybGJBbV26HiqMkABgPaDKjn0t1qM1Xrjjf1UAUStOFqm1nPtOxWKNW7uYLSP1MKh46nWU+0HFdS1z9TbQgWbrPJnKE0gp27CyleazE7DHDQ5jgrt+py6tuu5n7Gk9GkiJuUtpU+FeOV7HXe1wGXVRfNg4uW3R3O++KHtabtqwdV1RdcX5UNVJKpSyusWHMn+Vb5WflWLq3r3ZEW/Q9+jR1SpYkcBhs5rFfrVe8R7rq+CSu17BfkKSLQvVFmooFMtq+GeN60u1dqeWrBVoZbTZz9nF0Coq7OuOdov2bX0alyv1lN3V7XeqvuuKmW0DxWEqgeRWsojPfcPVd7X/USVqQpMdW0IHWOta4ge1abv1HVN9yBdc9Vqq54CXmuojpW2oQqC7MbK5oSOgSqCdH1XpYlajBWkKi+r+7n2s9Kpx4iJ8rzuj0qPJuoKR59XvtO1Wfsyu/2oPK8A1qP7pIJZBa6qfFCrt1ehoPyrNKnyQS30el/Dx3ScdV5792ldp3UdV0WT8o7GUOveq67c3377rTvmXn5RkK3x6ar00D1Sx01d6/X9Og81x0Cs72dAKAJo4DCggqO6I6lV03seZFZUEFDhTTX7unmoUKSZbFXg1DMwg7uRaSyXgmDdyHQT1XfopqgCr4IZ3fC1Pd3k9AxIBYQKPnWT1M1JN1S1AGvCERWWFRSphVy11XoGZ2h3RgXaKnhpXRWmVTutgtmwYcPcDVqFSX2fCjcKklWQ0I1WAbdusrrJ6+auCUtUIFLBTUGY1lE3Uo1RPNg4YBWYspq9VGM3VdCLZB949BtUiNTv1E1a3SdV0FT3wWiOTSxo/2o/qvudClz67aoIUY8HPVc4uKugCnAqiIwbN84VClWBodY59SjQ7OPZUUFesxtrP6gSRRUuyg8qMKrFxQu0wuXPcC30KkiqQKftqSVQLTg6Xtr/Gjcf6TNGc5vG+quLpoITtZ4q/+k3qiVP+Ton3azj4bdHc774oRZDBbE6xxXkqEJNAYWeK6wCvldAj2T/KrDXJF7q1pxdAK3KG/0ebVOt0EqHvk8tqsrzwZPd6dzVea7zQdczXZu0nvJyuMnFRMGErmPK47n97HePWhZ17dR18WBdxPXb1JNB+UjnsyomVUGj36FKmODnGEdy7h/KvK98p9Z1HcvQ64LSoXyoa5laxlUJoPNEFR/KO15lglpSFWirlfRQBdC6xisNuu+pokV5SUGz0qfKFFUEBQ998FpkNY9AdnRtVACrbapFOqtJytR7LXgeAlUAqfJCeVj7I7jyQeeq3lPQrIo4HWtVeujaomOne7yCUbU0656ne4PuyToOap1WftcEb8Fp1/1cFRfqFaO8oGOh81jrKLCOtGLtUNzPgFAJepZVpqUAAAAAACADxkADAAAAAOADATQAAAAAAD4QQAMAAAAA4AMBNAAAAAAAPhBAAwAAAADgAwE0AAAAAAA+8BzofEoPotcTyPS8PgAAAABAdFJSUiwhIcGaNm160HUJoPMpBc88whsAAAAAciaSuIoAOp/yWp5POOGEWCcFAAAAAPKtpUuX+l6XMdAAAAAAAPhAAA0AAAAAgA8E0AAAAAAA+EAADQAAAACADwTQAAAAAAD4QAANAAAAAIAPBNAAAAAAAPhAAA0AAAAAgA8E0AAAAAAA+EAADQAAAACADwTQAAAAAAD4QACdS5566im77LLLsl1n69atdsstt1iLFi2sZcuWNnz4cNu7d2+epREAAAAAEL3COfgs/mvGjBn26KOPWvPmzbNdb+DAgS5gfu6552zHjh1299132549e2zMmDF5llYAAAAAQHQIoHNg06ZNdu+999rChQvtmGOOyXbdb7/91hYtWmSzZ8+2OnXquGX33Xef9evXz26++WarVKlSHqUaAAAAABANunDnwE8//WRJSUn21ltvWePGjbNd9+uvv7ajjjoqPXgWdeNOSEiwb775Jg9SCwAAAADICVqgc6BTp07u5be1ukqVKhmWFSlSxMqVK2cbNmyI6vsDgYDrAg4AAAAAsKjjKjVs+kEAnUc09lkBc6iiRYva/v37o9pmSkqKLVu2LBdSBwAAACAr6nH65ZdfWps2bezcc8+NdXJwCISL1cIhgM4jxYoVs+Tk5EzLFTyXKFEiqm2q+3jdunVzIXUAAAAAwtm3b58LntPS0ty/gwYNcmX7gu6ZZ56xd955x7p162b9+/e3/GzFihW+1yWAziOVK1e2efPmZVimgHrbtm1WsWLFqLapbgbRBt8AAAAADk6Bs17e/9VSWdDL4Pv27XPBs/aH/r3mmmvydaWC3+7bwiRieUTPft64caOtXr06fZlm5ZZmzZrFMGUAAABA/EpL/U/wivjZJwcOHMhQqaC/CwpaoA+R1NRU27Jli5UuXdrVxmiW7pNOOsluuukmGzZsmJv8a+jQoXbeeefxCCsAAAAgC4mFEm3qnS/axj82x+T7U9JSMvz9yBWTLCkxyWKlcu2K1nd0z5h9f0FHAH2IaGbtzp072wMPPGA9evRw3QImTpxow4cPtz59+rjJw7p27WqDBw+OdVIBAACAuKbgec2ydTH57jRLMztK/Xw1XbPZ+uUbLZGOvAUWAXQuGT16dIa/q1WrZsuXL8+w7Mgjj7Tx48fnccoAAAAAREvB8hF7K9rW4pvdvwTPBRsBNAAAAABko+Ku6u4FUH0CAAAAAIAPBNAAAAAAAPhAAA0AAAAAgA8E0AAAAAAA+EAADQAAAACADwTQiAuPP/64nX766e5fsD8AAACAeEQAjZjbt2+fvfHGG5aWlub+1d8FGfsDAAAAiE8E0Ii5AwcOuGBR9K/+LsjYHwAAAEB8IoCGpaX+J1jDf7A/AAAAAIRTOOxSFCiJhRJt6p0v2sY/Nsfk+1PSUjL8/cgVkywpMSkmaalcu6L1Hd0zJt8NAAAAIL4RQMNR8Lxm2bqYfHeapZkdZWYJZhYwW798oyXSOQIAAABAnCFKQcwpWD5ib0UXPOtfgmcAAAAA8YgWaMSFiruquxcAAAAAxCua+gAAAAAA8IEAGgAAAAAAHwigAQAAAADwgQAaAAAAAAAfCKABAAAAAPCBABoAABz2Hn/8cTv99NPdvwAARIsAGgAAHNb27dtnb7zxhqWlpbl/9TcAANEggAYAAIe1AwcOuOBZ9K/+BgAgGgTQAAAchuiyDABA7iOABgDgMEOXZQAADg0CaAAADjN0WUZ+QU8JAPkNATQARIDCHg4mLfU/gSv+h32CcOgpASA/KhzrBABAfi3sXXXVVVasWLFYJwtxJrFQok2980Xb+MfmmKUhJS0lw9+PXDHJkhKTYpKWyrUrWt/RPWPy3Yhv9JQAkB8RQAOATxT24JeC5zXL1sXs+9MszewoM0sws4DZ+uUbLZFOZwBwWChzZGkLpKVZQiLXdU9e7g8CaAAADjMKlo/YW9G2Ft/s/iV4BoDDR/EyxVywuHnGdEvZFJveTrtTMvZ0Wv/4RCuZFJueTkmVKlrFSy/Ls+8jgAaQb8ZQqmss/od9guxU3FXdvYCscA3JjH2C/ETBc/K6tbH57gOpGf9ev96SCxeygoAAGkC+wLjSjBhXCiC/X1fj6ZoqXFcB+EEADSDfYFwpABw+11WuqQDyI65SABDhuFIV9BhXCgA5wzUVQH7ElQoAIqAxpfX/asbY0v/iudgAcoJrKoD8hgAaAJArz8XW3wAAAIczAmgAQFR4LjYAAChoCKABAACAOMHQGCC+EUADAAAAcYChMUD8I4AGAAAA4gBDY4D4RwANAAAAAIAPBNAAAAAAAPhAAA0AAAAAgA8E0AAAAAAA+EAADQAAAACADwTQAAAAAAD4QAANAAAAAIAPBNAAAAAAAPhAAA0AAAAAgA8E0AAAAAAA+EAADQAAAACADwTQAAAAAAD4QAANAAAAAIAPBNAAAAAAAPhAAA0AAAAAgA8E0AAAAAAA+EAADQAAAACADwTQAAAAAAD4QAANAAAAAIAPBNAAAAAAAPhAAA0AAAAAgA8E0AAAAAAA+EAADQAAAACADwTQAAAAAAD4QACdA2lpaTZ+/Hhr166dNWnSxPr3729r1qzJcv1//vnHbrnlFjv55JOtVatWdtNNN9mmTZvyNM0AAAAAgOgQQOfAE088YTNnzrQRI0bYrFmzXEDdr18/S05ODrv+jTfeaOvXr7epU6e6l/4/YMCAPE83AAAAACByBNBRUpA8ZcoUGzhwoHXs2NEaNGhg48aNs40bN9rcuXMzrb9jxw5btGiRa6Vu2LChNWrUyK6++mpbunSpbdu2LSa/AQCAQ63MkaUtkJYW62TEFfYHAORfhWOdgPzql19+sd27d1vr1q3Tl5UpU8YFxosXL7Zu3bplWL9YsWJWsmRJe+ONN6xly5Zu2Ztvvmm1atVynwMA4HBUvEwxS0hMtM0zplvKps0xScPulJQMf69/fKKVTEqKSVqSKlW0ipdeFpPvBgDkHAF0lNTSLFWqVMmwvGLFiunvBStSpIiNHj3ahg4das2bN7eEhAS37gsvvGCJidF1BAgEArZnzx7LCaWjePHiOdrG4Wjv3r1u/8ZC6DHV39HmkcMF+TRr5NX4Ql7NmoLn5HVrY/PdB1Iz/r1+vSUXLmQF9dwV8mrWuK7GF/Iq8uLc1eeU1/wggM7BAfIC42BFixa17du3hz0oy5Yts6ZNm7px0qmpqa7L9/XXX28vvviilSpVKuI0pKSkuG3mhC5IajVHRitXrkw/xnkt9Ht//fXXAn/jIJ9mjbwaX8iryA/nrpBXs8Z1Nb6QV+NTocQEU7ipcDXxv3/n93M3NK7LCgF0lNQl2xsL7f1f9u/fH/ZCN2fOHNfaPH/+/PRgedKkSXbqqafaK6+8YldccUXEaUhKSrK6devm6Hf4rWkpaNS1Pla1z7t27crwd7169aKqYDmckE+zRl6NL+RV5IdzV8irWeO6Gl/Iq/GpaGKida5QwT76+2/rVKGC+zs/n7srVqzwvS4BdJS8rtubN2+2GjVqpC/X3/Xr18+0/tdff+0OavBFsGzZsm7Z6tWro76glChRIqrPInuxrO3VbO7BdIw5zsgKeRXInwp6q2I847oK+HNJtaPd63A4dyOpqIl9VUE+pVm3FQwvXLgww0zbP//8s7Vo0SLT+pUrV3aBslqog8e1rF271o455pg8Szeyx2yxmbE/AAAAgP+gBToHfeR79+5tDz30kJUvX96qVq1qY8eOdYFyly5d3BjnLVu2WOnSpV0X7/POO88mT57sngU9aNAgt41HH33UjZnu0aNHrH8O/ovZYjNitlgAAADgfwigc0DPgD5w4IANGTLE9u3b51qeFSRrbLJaljt37mwPPPCAC5A14/bMmTNdkN2nTx83o6Jm49YyBdmIL8wWCwAAACAUAXQOFCpUyG677Tb3ClWtWjVbvnx5hmV16tRxE4cBAAAAAPIfxkADAAAAAOADATQAAAAAAD4QQAMAAAAA4AMBNAAAAAAAPhBAAwAAAADgAwE0AAAAAAA+EEADAAAAAOADATQAAAAAAD4QQAMAAAAA4AMBNAAAAAAAPhBAAwAAAADgAwE0AAAAAAA+EEADAAAAAOADATQAAAAAAD4QQAMAAAAA4AMBNAAAAAAAPhBAAwAAAADgAwE0AAAAAAA+EEADAAAAAOADATQAAAAAAD4QQAMAAAAA4AMBNAAAAAAAPhBAAwAAAADgAwE0AAAAAAA+EEADAAAAAOADATQA5ENljixtgbS0WCcjrrA/AADAoVb4kH8DACDXFS9TzBISE23zjOmWsmlzTNKwOyUlw9/rH59oJZOSYpKWpEoVreKll8XkuwEcXhWTurbiP9gfQGYE0ACQjyl4Tl63NjbffSA149/r11ty4UIxSQsA5BQVkxlRMQmERwANAAAA/BcVkwCyQ58MAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAHBYK5SYYAlBBR/9DQBANAigAQDAYa1oYqJ1rlDBFXo6Vajg/gYAIBqFo/oUAABAPnJJtaPdCwCAnKAKFgAAAAAAHwigAQAAAADwgQAaAAAAAAAfCKABAAAAAPCBABoAAAAAAB8IoAEAAAAA8IEAGgAAAAAAHwigAQAAAADwgQAaAAAAAAAfCKABAAAAAPCBABoAAAAAAB8IoKOUlpZm48ePt3bt2lmTJk2sf//+tmbNmizXT0lJsYcffjh9/d69e9uyZcvyNM0AAAAAgOgRQEfpiSeesJkzZ9qIESNs1qxZLqDu16+fJScnh11/2LBh9tprr9moUaPs1VdftfLly7uge+fOnXmedgAAAABA5Aigo6AgecqUKTZw4EDr2LGjNWjQwMaNG2cbN260uXPnZlpfLdMKmkeOHOlaoOvUqWP333+/FSlSxH788ceY/AYAAAAAQGQIoKPwyy+/2O7du61169bpy8qUKWONGjWyxYsXZ1r/iy++sNKlS1v79u0zrP/RRx9l2AYAAAAAIH4RQEdBLc1SpUqVDMsrVqyY/l6wlStXWvXq1V3rdI8ePeyUU05x3bd///33PEszAAAAACBnCufw8wXS3r173b/qgh2saNGitn379kzr79q1y1avXu3GTd9+++2u9fnJJ5+0Xr162ezZs+3II4+MKh2BQMD27NljOZGQkGDFixfP0TZQMPK88luskE/hF3kV+QV5FfkFeRUFIa8GAgGX1/wggI5CsWLF0sdCe/+X/fv3hz3BCxcu7IJojZPW+GfR/zt06GCvv/66m3wsGprZO6czeSu96noOZEe9KLyKo1ggn8Iv8iryC/Iq8gvyKgpKXi0S0jiaFQLoKHhdtzdv3mw1atRIX66/69evn2n9ypUruyDaC55Fgbe6da9duzbqdCQlJVndunUtJ/zWtKBgq1WrVsxrnwE/yKvIL8iryC/IqygIeXXFihW+1yWAjoJm3S5VqpQtXLgwPYDesWOH/fzzz+75zqFatGhhBw4csKVLl9oJJ5zglu3bt8/Nzn322Wfn6IJSokSJHPwSwB+6TiG/IK8ivyCvIr8gr6Ig5NWECCpqCKCjbN5XoPzQQw+55zlXrVrVxo4d61qau3TpYqmpqbZlyxY387Zamps3b25t2rSxO+64w+677z4rV66cjR8/3goVKmTdu3eP9c8BAAAAAPjALNxR0jOgL7zwQhsyZIj17NnTBcOTJ0923ao3bNhgbdu2dROEeSZMmGAtW7a0G264wX1OY6Kff/55F4ADAAAAAOIfLdBRUsB82223uVeoatWq2fLlyzMsU5fvYcOGuRcAAAAAIP+hBRoAAAAAAB8IoIE4UygxwRKCTlD9DQAAACD2CKCBOFM0MdE6V6jgTs5OFSq4vwEAAADEHmOggTh0SbWj3QsAAABA/KBpCwAAAAAAHwigAQAAAADwgQAaAAAAAAAfCmQAvXPnTpsxY4bdf//9tmXLFps/f779+eefsU4WAAAAACCOFbgA+tdff7UuXbrYq6++arNmzbLdu3fb3LlzrXv37rZo0aJYJw8AAAAAEKcKXACtVueePXvaa6+9ZklJSW7ZAw88YL169bIHH3ww1skDAAAAAMSpAhdAL1261M4777xMyy+55BJbsWJFTNIEAAAAAIh/BS6ALl++vK1cuTLT8iVLltiRRx4ZkzQBAAAAAOJfYStg+vfvb0OGDLFrr73WAoGALViwwF5//XWbNm2a3XTTTbFOHgAAAAAgThW4AFpdtStWrGiTJ0+2YsWKuXHPtWrVshEjRthZZ50V6+QBAAAAAOJUgQugn332WevWrZt7jBUAAAAAAH4VuDHQkyZNspSUlFgnAwAAAACQzxS4AFqtz08++aStWrXKkpOTY50cAAAAAEA+UeC6cH/66ae2fv16N3FYOMuWLcvzNAEAAAAA4l+BC6BHjx4d6yQAAAAAAPKhAhdAt2zZ0v2rLty///67paWluVm469atG+ukAQAAAADiWIELoHfs2GGDBw+2Dz/80MqWLWupqam2e/dua9GihT3++ONWunTpWCcRAAAAABCHCtwkYvfff79t3LjRZs+ebQsXLrSvv/7a3n77bduzZ4898MADsU4eAAAAACBOFbgA+qOPPrJhw4ZZ7dq105ep+/bQoUNdqzQAAAAAAOEUuAC6aNGilpiY+WcnJCS47twAAAAAAIRT4ALoTp062fDhw+3PP/9MX6YJxdS1u0OHDjFNGwAAAAAgfhW4ScRuu+02GzBggHXp0sVNIibbt2+39u3b2z333BPr5AEAAAAA4lSBC6DLlClj06dPt+XLl7vHWKlLtx5jFTwmGgAAAAAAK+gBdHJysj366KNWtWpVu/TSS92yHj16WJs2bWzQoEGWlJQU6yQCAAAAAOJQgRsDrbHOn3zyiTVo0CB92fXXX28ff/yxjRkzJqZpAwAAAADErwIXQM+dO9ceeugha9asWfqy0047zT0DWs+GBgAAAAAgnAIXQAcCAdu/f3/Y5SkpKTFJEwAAAAAg/hW4APqMM85ws21//fXXtmfPHvdasmSJDRs2zE4//fRYJw8AAAAAEKcK3CRigwcPtrvvvtv69OljaWlpblmhQoWse/fudtddd8U6eQCQbxRKTLAE9eD5b22s/gYAADicFagA+u+//7YjjjjCHnnkEduxY4etWrXKFi9e7B5lpZm4S5QoEeskAkC+UTQx0TpXqGAf/f23dapQwf0NAIgeFZNA/CsQpZ3du3fbtddea+3atXNBs3z44Yd2ySWX2IwZM9zrnHPOsY0bN8Y6qQCQr1xS7Wh7usmJ7l8AQO5UTKqATsUkEJ8KxFk5YcIEW7dunb3wwgtWu3ZtN+5Zj7M68cQT7f3337c5c+ZY27Zt3ezcAAAAQKxQMQnEt8SC8ugqjXvWo6sSEhLs888/d63Sl112mSUlJbl11IVbywEAAAAAKLAB9F9//WU1atRI//vLL790E4ep1dlToUIF27t3b4xSCAAAAACIdwUigK5UqZKtWbMm/XnPn3zyiTVu3NjKli2bvs63335rVapUiWEqAQAAAADxrEAE0HpE1ciRI93EYaNGjbINGzZYr1690t//5Zdf3MzcXbt2jWk6AQAAAADxq0A8xuq6666zXbt2uec8awz0wIEDrVu3bu69MWPG2NSpU61jx45uPQAAAAAACmwAXbhwYRs8eLB7hTrvvPPcI6waNWoUk7QBAAAAAPKHAhFAZ6d+/fqxTgIAAAAAIB8oEGOgAQAAAADIKQJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAugcSEtLs/Hjx1u7du2sSZMm1r9/f1uzZo2vz7711ltWv359W7t27SFPJwAAAAAg5wigc+CJJ56wmTNn2ogRI2zWrFkuoO7Xr58lJydn+7l169bZfffdl2fpBAAAAADkHAF0lBQkT5kyxQYOHGgdO3a0Bg0a2Lhx42zjxo02d+7cLD+nIPu2226z4447Lk/TCwAAAADIGQLoKP3yyy+2e/dua926dfqyMmXKWKNGjWzx4sVZfm7SpEmWkpJi11xzTR6lFAAAAACQGwrnylYKILU0S5UqVTIsr1ixYvp7oX744QfXav3KK6/Ypk2bcpyGQCBge/bsydE2EhISrHjx4jlOCw5ve/fudfktVsin8Iu8ivyCvIr8gryKgpBXA4GAy2t+EEDn4ABJkSJFMiwvWrSobd++PdP6CnRvvfVW9zrmmGNyJYBWS/ayZctytA1dkNRqDmRn5cqV6Xk+Fsin8Iu8ivyCvIr8gryKgpJXi4TEdVkhgI5SsWLF0sdCe/+X/fv3h60lu//++61WrVp2ySWX5FoakpKSrG7dujnaht+aFhRsyruxrn0G/CCvIr8gryK/IK+iIOTVFStW+F6XADpKXtftzZs3W40aNdKX6289nirUq6++6mo1mjZt6v5OTU11/3br1s2uvfZa94rmglKiRIkc/ArAH7pOIb8gryK/IK8ivyCvoiDk1YQIKmoIoKOkWbdLlSplCxcuTA+gd+zYYT///LP17t070/qhM3N///33bjbup59+2urVq5dn6QYAAAAARIcAOkpqTVag/NBDD1n58uWtatWqNnbsWKtcubJ16dLFtTBv2bLFSpcu7bp416xZM8PnvYnGjj76aCtXrlyMfgUAAAAAwC8eY5UDegb0hRdeaEOGDLGePXtaoUKFbPLkyW5s8oYNG6xt27Y2e/bsWCcTAAAAAJALaIHOAQXM6oatV6hq1arZ8uXLs/xsq1atsn0fAAAAABBfaIEGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcC6BxIS0uz8ePHW7t27axJkybWv39/W7NmTZbr//bbb3b11Vdbq1atrHXr1jZw4EBbv359nqYZAAAAABAdAugceOKJJ2zmzJk2YsQImzVrlguo+/XrZ8nJyZnW3bp1q/Xt29eKFStm06dPt2eeeca2bNni1t+/f39M0g8AAAAA8K9wBOsiiILkKVOm2K233modO3Z0y8aNG+dao+fOnWvdunXLsP68efNsz5499uCDD7ogWsaOHes+u2TJEtcifaikpqZaSkpKtuuUKF/cylYpbQVd0dJFbN++fXageAlLLVPGCroDxYvbgQMHrFChQpaQkBDr5AAAAAAxRQAdpV9++cV2796dIfAtU6aMNWrUyBYvXpwpgNZ6arH2gmdJTPxPB4AdO3YckjQGAgHbuHGjbdu27aDrturV2A6kpFpBV7R4EVu5cqUdOOkks9QDVtDtLVTI9vz2mwugK1asaGXLliWQBgAAQIFFAB0lBaZSpUqVDMsVZHjvBatWrZp7BXv66addQN2iRYtDlkYFz0pTiRIlsg18Nhf621L2EzCWKF3Ujqh8hCX/9ZfZAfaHFS5sCeXKuUqeDRs22N69ezPleQAAAKCgIICOkgIJKVKkSIblRYsWte3btx/08xoH/cILL9iQIUOsfPnyUbcwq1t4Vt22NcZawXO5cuWy3IaCarWEJxVKsgAj4i2pcBFXqZGYlGSBWCcmDiQkJVmR0qWtZMmSlpSUZH///beVKlXKtUjnaToSEqx48eJ5+p3Iv9dmXRtjhbwKv8iryC/IqygIeTUQCPjuZUkAHSWvK7bGQgd3y9aEYNmd5Do4jz32mD355JN23XXX2WWXXRZ1GjSuedmyZVm+ryBHwbHG9GZF73NRwsEoXxcuXNjl919//TXPv195VMMjgIPREAyvgjMWyKvwi7yK/IK8ioKSV4uENIxmhQA6Sl431s2bN1uNGjXSl+vv+vXrZxnwDh482N555x337xVXXJGjNKhFsG7dulkGPHpEloL74AA/FONZ4Yd6VmiWeeW5mjVrur/zEvkUftWqVSvmLSWAH+RV5BfkVRSEvLpixQrf6xJAR6lBgwauK+vChQvTA2iNE/3555+td+/eYT9z++232wcffGAPP/ywnX322blyQdHY5qxalvVSK3Red7fF4cfLS16PhewqZYBYokcN8gvyKvIL8ioKQl5NiKCihgA6B038CpQfeughN4a5atWq7rFUlStXti5duqSPQS5durQLNl577TWbPXu2C6Jbtmxpf2mSqv/y1kHWVq5eaTNfecF++Ol727lrp5UpVcZOaHSiXXJBL6tTq06skwcAAACgAGDaqBwYOHCgXXjhhW4isJ49e7oWusmTJ7turpqxuG3bti5oFnXbFj0HWsuDX946CG/Vn6vsxsH/th07d9iAfv+20fc+aP37XGOb/tpkgwbfYMuW/xzrJAIAAAAoAGiBzgEFzLfddpt7hdIjq5YvX57+95QpU/I4dYePV99+2cqULmOj7hmdoTt6m1an2FU3XGEzXn7B7h8yKqZpBAAAAHD4owUacW/r1q1uQgBNYhWseLHidu2V11v7UzqkL/v48/k24Lbr7NxeZ9vFV15oj00a57p8e8ZOGGOXXdMrw3Y2bt5oXXp0trkfvef+1rj2Ezp0sJffecfO6NXLWp97rn31zTfuvc8WLrTLBw2ylt26WeeLL7YRjz5qO3btSt/Whk2b7PaRI63t+edby7PPtn633WbLfvvtkO0bAAAAAHmHFmjEvVbNT7ZFSxbaoMH/tq6du1qTE5pa9ao13GD/9m3+FzyrJfr5Wc/ZOV3Ptb69rrQNmzbYtBenui7ej42eGPHM0ZOmT7c7BgxwM5o3btTIPlmwwAbec4+d2qaNPTRkiG3fudMefuopW7dhg00aM8a2bt9ulw0aZMWLFrXBN9xgJYoVsxdee8363nyzzZw40WrXrHkI9g4AAACAvEIAjbingHjL1n/s5TdfsonPTHDLypYpa82aNLfzz+5h9Y9t4FqZNcnYWaefbTf0H5j+2WNqHGO3DLnJ3v/oPTv3zO4Rfe/F55xjXdq3T//7yeeft/p16ti4YcPSZ+pLKlzYHp82zf7ZutVmvP66bd+xw56fOtWOrlTJvd+2ZUvrfuWVbp2Hhw7NpT0CAAAAIBYIoJEv9OnZ13qcc6F9/e1i+/aHJfb9j9/ZR59+aPM/+8h1465apap7zvap7Tpl+Jxm6q50VCU3e3ekAXT9oGds79u/33XFvr5PnwzT3Hc99VT3koVLlrgAu2KFCnYgNdUtS0hMdEH0u/Pm5XAPAAAAAIg1AmjkG6VLlXYBshckr/jjNxvz2AP27PNP283X3+qWHVGufKbPadmu3f8bp+yXumB71F1b47DLlyuX5fpa58916+ykM84I+/7effusOI8rAwAAAPItAmjEtb//+ctuuH2A9el5hZ152lkZ3qtb+1i7oteVNnzMvbZ+43q3bOu2LVa9avUM66n7d5XKVdz/EyzBUkMmI9u7d+9B01G6ZEnX8rx127YMy/cnJ9ui776zExs0cOs0P/FEu+Waa8Juo0hSks9fDQAAACAeMQs34ppaj/XoqrfnvGnJycmZ3l+7bo0VKVLEup/V3T1/W126gy39+Qfb/PdmO67B8e7vEiVK2I6d2zNs66dffjxoOkoUL+66Z3+8YEGG5Z8vWmQD7rrLNv/zjzVr3NhWrV1rNatVs+Pq109/vT1vnr02Z06GR3ABAAAAyH9ogUZcU9A58OpBNmzMUPd4qu5nnWc1qtWwffv32TfffWNvzXnDrujZ18qULmsXn9/TZrw83QoXKmytWrS2jW4W7uesZvWadvqpXdz2WjU72d5493V75ImHrGvnM23lnyvt1TdftsTEg9clDbjiCjcLtx5Tde7pp7uJwx6bPNk6nXKKHVurll1+wQX2zgcf2NW33259LrrIypYpY+9//LG9Onu23XbddXmwtwAAAAAcSgTQyBePsRo/eqKbhXvmKzNs+45tlpRUxI6tXdfuvuUea3tyO7fe5Zf0sfJHlLc3Z79usz9410qXLmPt27R33bz1zGjRzN1X97nGBdGfffWpHVu7nt17x3C78a7/zdydlQ4nn2wTRoxwj7e68d577Yhy5eyszp3t+ssvd+9r8rDp48fbY88+ayMee8y1cqs1evgtt9j5Z555iPcSAAAAgEONABr5wrF16tldNw856HrdzjjHvbJzYfd/uVewd//vvfT/t2rVypZ+8okFUlIyfbb9ySe7V1aqH320PcTjqgAAAIDDEmOgAQAAAADwgQAaAAAAAAAfCKABAAAAAPCBABoAAAAAAB8IoAEAAAAA8IEAGgAAAAAAHwigAQAAAADwgQAaAAAAAAAfCKABAAAAAPChsJ+VcPgrXCRvskJqapqlpqTmyXcBAAAAQG6iBboASktNy7TsqOpHWpU6lQ79q3ZFK5RUKE9+59z571uXHp1t5eo/wr7/07If3fs//fKTbdy80f1/yXdLstzeiaed5l7zPvss7PvX3nmne//N99/PUboj3UZufCcAAACAg6MFugBKLJRoU+980Tb+sTlPv7dy7YrWd3RPK1QoMU9aodu36WBPTH7cPvr0Q7vqstqZ3p/78VyrUa2GHdfgOBdA+1G4cGH74NNP7bR27TIs37Z9uy3+/vtcSzsAAACA+EMAXUApeF6zbJ0dzooVLWYdTulo8z/7yK7s3c8SEhLS30tOTrbPvvzEel14aUTbPPmkk+zThQttf3KyFS1SJH25WqVPbNjQvvnhh1z9DQAAAADiBwE04t6iJQtt2ovP2Z9rVluxYsWtZbOWdm3f6610qdLu/XUb1tnTz02y73/63golJlqzJs3tuisH2BHljrCunc+0OR+8a0t/XmonHndi+ja/XPSF7du/z07r2CWitLRv1cq+/uEH+2LxYut0yinpy9/75BPr2rFjpgD60wUL7KkXXrAVq1ZZyRIl7MxTT7V/X3mlFSta1L2/8a+/bNT48bbou++sVMmSdlP//pm+85MFC+yJadPsj9WrrWKFCm4bV196qRUJCuABAAAAHHqMgUZc275juw0fc6+d0amrPTt+qg27Y7gLhp+Z9pR7f9fuXXbLkJssOSXZHhz+kI0ZNtY2bFxvIx8e4d5vWK+h1ax+jH306bwM25338Qd2cvPWVq5suYjSU7xYMevQqpXN/eST9GX/bN1q3/34o53evn2GdT/8/HMbOHSodTj5ZPu/SZPsnhtvtPc//tjuGDnSvX8gNdWuGzzYtu3YYVMeecQeHjrUpr30UoZtfL5okd02YoRdePbZ9tqzz9rdAwfa+598YneNHh3hngQAAACQUwTQiGt///OXpaSkWMWjKlqlipXsuIbH232D77fuZ53v3v/48/m2Z+9uu+vmIVavTj2rW/tYu+n6W6xh/UYuqJYzOne1z7761G1Htm7bYl9/t9i6nnZmVGnq0qGDaxVWN3BRMN38xBOtfLmMwfjkWbNcK/XVvXvbMdWq2alt2rgAeP6XX9rvq1fbwiVL7PdVq2zkHXdYo2OPtcaNGtl9t92WYRvPzJxpF5x9tl3UrZtVP/poa9O8uQvE5376qa3b6G/cNgAAAIDcQRduxLU6teraqe062dBRQ6z8EUfaSY1Pci3Hp7Rq695f9edKq1alWnp3bql9TB338pzW4XSb8sKztvjbRdam5Sn24acfum01b9IiqjS1a9XKAoGAffH11y4ofu/jj63HmZmD8RUrV7ru1sGaNW7s/v3tjz9c9+0ypUu7wNjToG7d9O7dsmzFCvtx+XJ7bfbs9GWB//77x59/WtXKlaP6DQAAAAAiRwCNuDf4prut978ut8VLFtmS77+xMY8+4Fqi1WW7UKGDZ2F101bQrdm4FUDPmz/Xupx6hiUmRtcBQwGuumVrNu6Gxx5ry377zTrdf3+m9RRkZ1qWlpY+m7cmNfP+Dla40P8e86X3+/7rX3Zul8xjtSuULx9V+gEAAABEhy7ciGvLfl1mT055wqpXrW49zrnA7h8yym4ecKt9t/Rb27ptq9WsXtPWblhru3fvSv/Mb7//ahddcYH99fdf6cs0hnrh1wvs1xXLbeWfK1237pw4o2NH+/jLL232Rx9Z62bNrHSpUpnWObZ2bfv2xx8zLFuydKn7t3aNGla/Th3buXu3m2DMs3rtWtu1Z0/633WPOcZWrVljNapWTX9t+usve+Tpp23P3r05+g0AAAAAIkMAjbimmavffu9Ne/b5p91s2ytXr7RPvvjYqlapamXLlLVO7Ttb6VJlbMxjo+2PVb/br7//auOfetRq1axlR1U4Kn07zZu2sFKlStn4px6zJic0tSqVquQoXae0aOG6Uj87Y4Z1Demm7VHLsSYSe/qFF2zV2rVu3PSoiROt/cknW+2aNa1lkyZ2QoMGbkKw73/+2X5avtz9P7hlvO8ll9gHn31mk6ZPd9tYsGSJ3TN2rAu8aYEGAAAA8hZduAuoyrUr5ovvrFGtpg29fZi98H/T7a333rTExELW5PgmNvKe/wSaetbzA0NH26SpT9qgwQNd9+qWzVrZNVdcm2E7hQoVct22X3x1pusSnlN6BrTGP8/7/HPXnTsczco95q673ERgT82YYUeULWtndepk1/fp495X+h8fOdIemDjRrr3zTrfNfr162fpNm9K30UUzew8ZYs/OnOm2U7Z0aevYurXdGOZxVwAAAAAOLQLoAigtNc36ju4Zk+9OPZBqqamZx/1mR+OX9couyB51z8Ef69T30qvcK5zKFSvb3Nc+tJJli2f5+R/mZXwU1qg777RRB1lHrdNZtVBLubJlbczdGQP63j16ZJr1Wy+/6QIAAABwaBBAF0CJhTL33P9rzT92IPnAIf9uBc+pKamH/HsAAAAAILcRQMNR8Jy87z/PSQYAAAAAZMYkYgAAAAAA+EAADQAAAACADwTQAAAAAAD4QAANAAAAAIAPBNAAAAAAAPhAAA0AAAAAgA8E0AAAAAAA+MBzoOEULpI3WSE1Nc1SU1Ij+sxl1/SyTX9tSv87ISHBihcrbnVq1bU+PfvaicedmGH9ufPft/fmzbaVq1e6v4+pUct6nHOBtWvdPtO209LS7LJrL7Vt27bajGdmWcmyxbNMx+LvvrOrbr01w7KSJUpYw7p1bVC/fta4USPLK2++/77dM3as/TBvnvu766WX2rldutj1ffrkWRoAAACAgoYAugAKpKVZQmLGzgdHVT8yT747LTXV1v++OeIg+sJzL7ILu//L/T8QCNiOnTts6ozJdveIO23yhKlW8ahKbvnIh0fYd0u/tcsu7mODrr3JBdufL/jcLe/b60q7uEfPDNtd8sMS27lrh5UtW87e/3COXdn3yoOmZebEiVa5YkUXfG/fudNmvfmmXXfnnfbm1Kl21JF5sx8zpenxx61Y0aIx+W4AAACgoCCALoAUPG+eMd1SNm3O0+9NqlTRKl56mRUqlBhxAF2sWHErf0T59L+PLH+kDbr2RuvZ72L7YuHndn63C+zt996yzxd8ZhPGPG7H1qmXvm6vC2taWlqqTZv1nJ3arpMLtj0Kmo9veIJVrljF5sybbX2v6HvQtBxRrpxVKP+ftFSsUMHuvOEGe/fDD23eZ59Zz/POs1goX65cTL4XAAAAKEgIoAsoBc/J69ZafpaYWMj9m5RUxP37zvtvW6vmJ2cInj3nn93DGh/fxI4o978gfOeunfbloi+s76VXWZ1j6tg7779li75ZZGdXPyuidBQuVMiSCmc8lb5ZutSemDbNfv71V0tOSbFqVapY/169rNtpp7n3/9m61UZNmOC6he/dt88aHnusDbzySmveuLF7PyUlxSY+95y9O2+e7dy92+oec4wNuOIKa9O8edg0BHfh1vd+++OP1rpZM5v5xhu2bft2O6FhQ7tn0CCrXbPmf3/7Lnvk6aftoy++cN/VsF49u7l/fzuufv2IfjsAAABQkDCJGPKlv//5yx5/doIVK1bMWp7U0pKTk23VnyvtuAbHh12/ZMlSdkKjEy0pKSl92fzPPrQDBw5Y+9bt7cTjGlu5suXsjbffiCgd+5OTbcqsWZYWCNhp7dq5ZZv+/tt16T6+fn37vyeftJcmTXL/v/fhh13gLPc/9pjt37/fpjzyiL36zDNWs1o1GzR0qO3Zu9e9P+TBB+2rr7+2BwYPdp8/o2NHu2HIEPt0wQJf6Vry44+2ZOlSe3zkSJv26KO2Zds2GzlhgntPXd0H3H23rd2wwSbcf7/NmDjRTmzY0C6/8UZb9ttvEf1+AAAAoCChBRr5wqzXZtorb73k/p+amupaTWtUq2FDbh3qumT/s+Uf917pkqV8b/P9j963hvUapXfp7tCmo70z923bvHmzZdch+vx+/SxBgagC6P37XUB6Y//+6eOfFcxfd/nldsW//uXGYEu/nj3t7Q8+sFVr19qRRxzhgtdja9VyLdMau3zH9dfb2Z06WaFChezPdetszvz5LnBuULeu+/zlF15oy3//3Z576SVrf/LJB/1tqhgYdeedVqZ0aff3Rd262bhnnnH/X/jtt/b9zz/bp6++amXLlHHLBl11lX3300824/XX7f7bb/e9DwEAAICChAAa+cLZXc6x884+3/0/MTHRypQq7VqVPWVKl3HBqiYX8+OPVb/bb7//atdfdUP6so7tOtmbc96wl19+2fpfcEGWn31i5Eg39ll279ljX3//vT06ebL7+8qLL7bqRx9t53Xt6oLR31autDXr1tnyP/5In0RNrr3sMhs8erR98Omn1vT4413X7LM6dbKiRYrYLytWuHX63Hhjhu89kJpqpUuW9PX7FKR7wbPoc6p0ELUyK+jv0qtXhs/ofbWoAwAAAAiPABr5QulSpa1qlapZvq+u2fXq1LOffvkp7Pu7du+y4WPutcsuvtx111brs0ya+oR7BXvllVfsqvPPd63M4VSpVMmqVq6c/rfGL/++erVNe+klF0Dr/wp+Gx17rJ3crJmd1ratHVG2rPW64X/Beue2be3DWbPsi8WLbcGSJTb91Vdt0vTp9sKECW52b3lu3Dj3mKxgqjzwo0hQV/VQCp5LlShhs558MqLPAQAAAAUdATQOG2eefraNf+pR17IcOpHY6++8Zkt//sEqV6zsujd/9Ok8a9akuV3d59oM6331zRf23AtT7bMFC6x9ixa+v1vdub3A9+W333YtwE8/+GD6+x9/9VX6euri/djkyW5Csa6nnupe+/bvt04XXWSfLlxo7Vu1cuv+vWWLC84946dMsUKJiW4ysZzQhGS79uyxlAMHrM5/JxWTYQ8/bPXr1InZTOIAAABAvGMSMRw2unY+01o0bWF3Dr/d3przpq1bv9Z+X/m7PfP8Uzbj5enWv881brzzgq+/su07ttsF515ktWrWyvDq9a9eVqpUKXvprbey/J6t27a54FavjZs322tz5rjZsrudfrp7v9JRR7nlny1aZOs3bXKPt9KkYfbf4LlIkSL24/Lldt+4cW4s8rqNG+3N99+3Pfv2WeNGjVyAq3HOIx591AXea9evtyn/9382+cUXrdrRR+d4P53SooU1qFPHbhsxwhZ9950bcz32ySddGrxZugEAAABkRgt0AaVnMh9u36nuzcPuHGFvzH7dPdN5ygvPukm5atY4xu69fbi1btnGrff+R+9ZtarVrVnjZpm2UbJkSbvooots2rRptmHTJtddO1RwV2x1HT+6YkXrc9FFblyzXHr++bZqzRq764EHXCtvjapV3SOqnnj+efvp11+tbcuWNnbIEBe0Dhw61Hbt3m21qld3M243O+EEtw29P2HKFBdEb9+xw42rHn7LLda9S5cc7yftk6cefNA9xkpBtB6jpcB53PDh1qpp0xxvHwAAADhcEUAXQIG0NKt46X+CvbymSbRSU//T1dmv6U/NjCg4vOCcC90rKyPuGpntNu688067+YorLPDfSbc8LZo0sR/mzTtoGtTCPPzWW90rmJ7T7NEkZGPvuSfLbRQvVsxuv/569wqn+xlnuJfnvRkz0v+vZ0Hrld36GpM94rbbDvpbAAAAAPwPAXQBlBBmIqq/1vxjB5IPHPLvVvCcmvKfmagBAAAAID8hgIaj4Dl5X8YWVwAAAADA/zCJGAAAAAAAPhBAAwAAAADgAwE0AAAAAAA+EEAf5gKBQKyTgMMEeQkAAAAFHQH0YUrPJ5Y9e/bEOik4TOzevdsSEhLS8xYAAABQ0DAL92FKz0MuV66cbd682f1dokQJF/xkJSU1xQ6kHfrHWMW7lAPJtm/fPkvWM6APsD9k/86dtmPHDvdSnlLeAgAAAAoiAujDWOXKld2/XhCdne1/7bADPJ/Ziu4sYtv2brMDO3aYpRJAW6FCVnjXLhc0V6lSxcqWLRvrFAEAAAAxQwB9GFOLs4KeihUrWopaVLPx1GPP28Y/NllBd3z7hnbBrd1s09SplrJ5oxV0SRUrWdX+V7sAOrseDAAAAEBBQABdACj4OVi32z1b9tr2DTutoNu/M9mKFStmhffusTS1QhdwhUuXscKFuUwAAAAAwiRiOZCWlmbjx4+3du3aWZMmTax///62Zs2aLNffunWr3XLLLdaiRQtr2bKlDR8+3Pbu3ZunaQYAAAAARIcAOgeeeOIJmzlzpo0YMcJmzZrlAup+/fpZcnJy2PUHDhxoq1evtueee84ee+wx++STT2zYsGF5nm4AAAAAQOQIoKOkIHnKlCkuKO7YsaM1aNDAxo0bZxs3brS5c+dmWv/bb7+1RYsW2ZgxY+y4446z1q1b23333WdvvvmmbdrE2GMAAAAAiHcE0FH65Zdf3HNxFQh7ypQpY40aNbLFixdnWv/rr7+2o446yurUqZO+TN24NTHTN998k2fpBgAAAABEh9mBoqSWZtEs18E047X3XjC1MoeuW6RIEfdc3Q0bNkT8/ZpVOxAI2A8//GA5pSC+w4CWlnogzQq6IsWSbOnSpZbauo1ZKo/10mOstixd6vJarJFPMyKvhiCvxi3yagjyatwir4Ygr8Yt8mru51XFVn6fOEMAHSVv8i8FwcGKFi1q27dvD7t+6Lre+vv374/4+70DnFuPFipdvlSubOdwUagU+yNYvDzCinyaGXk1I/Jq/CKvZkRejV/k1YzIq/GLvJp7eVWfJYA+xPSoI28stPd/UTBcvHjxsOuHm1xM65coUSLi72/atGnEnwEAAAAARI8x0FHyumNv3rw5w3L9XalSpUzrV65cOdO6Cqi3bdvmun0DAAAAAOIbAXSUNOt2qVKlbOHChenLduzYYT///LN7znMoLdPYaD3GyqNZuaVZs2Z5lGoAAAAAQLTowh0ljWfu3bu3PfTQQ1a+fHmrWrWqjR071rU0d+nSxVJTU23Lli1WunRp1327cePGdtJJJ9lNN93knv28Z88eGzp0qJ133nlhW6wBAAAAAPElIRAPU+vlUwqSH3nkEXvttdds3759rpVZQXG1atVs7dq11rlzZ3vggQesR48ebv1//vnHhg8fbp999pmbPKxr1642ePBg938AAAAAQHwjgAYAAAAAwAfGQAMAAAAA4AMBNAAAAAAAPhBAAwAAAADgAwE0AAAAAAA+EEADAAAAAOADATQAAAAAALkdQHfq1Mnq169vU6dODfu+noGs9ydMmOCeg6z/Z/W65pprMn3+iy++cO8NGDAg7Pb13kUXXeSevxzqsssuszvvvNP3b9Gzm7NKW6tWrTKsu2nTJvf8Zv3+448/3tq3b28333yz/fTTT2G3mZ3Q7zrhhBPs9NNPt4ceesj27Nlj0brlllvc9ubNm5flOr/88ovddtttLv0nnniinXHGGTZu3DjbtWtXVOsuXLjQfaeOdSjv+Gud4HWDXw0aNLCTTjrJLrnkEvvqq6/Cpvmll15y644aNSrL37VlyxZ78MEHXRqV1g4dOtjtt99uq1evdu/v37/fzjzzTDvuuOPC5l89l1vLe/fuTf7Nw/wbyW/wjuO5557rPhepHTt22OjRo9P3wcknn2w33HCD/fzzzxHnp2Dbt2+3hx9+2K2rfXHKKafYtddeawsWLMiwXlb5qWnTpnbeeefZu+++m+H6ml3ea926NfkzD/KnrgPhtqdjPWnSJEtLS4v42hbpcfObF7XvlF6Pnk75/PPPW/fu3d3nmjVrZpdeeqm99957GT6nY6pjG0r5UddDfc7Lo8qXycnJmb5Xr3D3kKy27Qdljfg6F8L9hoYNG1qLFi2sb9++Ga6j4c6H4Nd9992XYdtr1qyxe++91/1mpVH/jhgxwv7666+IywSh5Y5wIj1+kSLvxlfe9VtOPtTlWb/7J5ryOmKjcKQfSEpKsvfff99dNIMdOHDA5s6dawkJCRmW6yKhG3CookWLZlqmE6tWrVr28ccfu8xWqVKlTOv88MMPNnnyZLv66qstN3z++eeZliUm/q9eYdmyZe631qlTx2X+2rVru7TNmDHDLr74YnvggQfsnHPOieg777rrLjvrrLPc/3Ux0G8aM2aMff/99zZlyhS3jyOxc+dOd0HQvps1a5addtppmdbRsdHFo1u3bjZ+/Hg78sgjbfny5a5wpn2gwlbJkiUjXjdSL7/8slWpUsX9XwXQdevW2SOPPOJuFHPmzLGqVauGzRNvvPGGS1Novlm5cqVdfvnlVr16dbv77rvdujo+TzzxhP3rX/+yF154wY499lh3s9WFTcc2OP/u3r3b3bxVMNVxIP/mff492G/w8viNN97o8mE0rrvuOneNUj5QXvnnn3/smWeecUHFK6+84vZPJPlJNmzY4AokxYsXd3lTFTRbt251efXKK690N8d+/fplmZ8U5KiQ+NRTT9mtt97qzjPv+hq6n5V2BTEK2M8///yw2wtG/syd/Fm5cmWXP4IrcT755BO7//773XauuuqqqK5tfo5bJHkxlK7bSo/2hQqf+/btc2nQOaSKJOWlrNxzzz329ttvu4qgYcOGWeHChW3x4sVumwrAtQ+Dr//6nbo3hAZGOUVZI77OhdDfoABNeVTXVJ0HKoME54vg8yGYrpeeb775xp0fCsT1+3SOqHJIlZI9e/a0mTNnWsWKFSMqE8QD8m7+LCdHyu81P9L9cyjL4MhFgQiceuqpgX79+gXq168f2LBhQ4b3PvvsM/d+x44dA+PHjw+sWbMmUK9evcCCBQt8bXv79u2BE044IfD6668HmjVrFpgwYUKmdbS9zp07B44//vjAb7/9luG93r17B+644w7fv+XVV19128tOSkpK4PTTT3e/+cCBA5neHz16dKBx48aBP//80/c29b7WC7V06VK3X1966aVApGbOnBlo2rRp4M033ww0aNDA7ftgmzdvdu+PHDky02dXr14daNSoUWDSpEkRr6tjq98T+n0SevyzW3fdunXuvWnTpmVYvmLFCrf8gw8+cPtGeSPUBRdcELjooosC+/fvz7Bcf3ft2jVw5ZVXpi876aST3HaC8+99990XaNWqVeCdd94h/+Zx/vXzffLhhx+643L++edn+f3ZWb58ufvcTz/9lGF5cnJyoH379oFRo0ZFlZ90zLp37x7Ys2dPpu984YUX3Ln4zTffuL+zy0/a9oknnujOO+/6Gvo7ub7mff7UftY+D6dv377u2Ed6bYvkuEWSF5VOpdfTsmXLwNSpUzNt88Ybbwycd9556X/rmOrYel577bVAw4YNA4sXL8702fXr17vt3nPPPRm+V3lGv+mLL77IsH7otiNBWSO+zoXsvm/RokXuvXnz5h30fAjNxx06dAgMGDAgkJaWluG9bdu2ZcprfsoEfvJCpMcvUuTd+Mq7fsvJh6o8G+n+iaQMjtiKeAy0uhIcffTRmbqCzZ4923WTDa1Z8+udd96xlJQU113h1FNPdbX+4bqgqEWnRo0adscdd4R9PzeppUG1oaq1L1SoUKb3Bw0a5H7v//3f/+X4u9SlQ93ltB8ipRrJli1bWufOnV2tnLo4BVNrglog1AoXSvty2rRpduGFF0a8bm7xalnV0hH6u8qWLevyg7rGqNYw2I8//mhLly51taxFihTJ8J7+fvTRR11riqdMmTLupX2k/KuaTNVwq5VF3aLIv7HJvwejWmP1Hgg9/n55NeXaH2r19SgfqBXPq6WPJD+pe9WiRYvs+uuvz9Ci4unVq5drOZw+fbqv9Cnv61h419dQXF/jK38qvaF5JJJr28FEem0Ll6c0jEDX8mBDhgzJ0NU7lFo2lEeaN2+e6T21tPTp08def/1115rj0bAKDStQK3ludi+krJE/zoVo8/j8+fNdLx51RQ49lrrvq4dQaDnkYGWCeEHezX/l5NwSej5Eun9iUQZHHk4ipgtA8IVB46JUyD377LOjTIbZq6++6jJ3+fLlXbcNXVjVRSWUCg/q7qAuEbrAHkrffvutlShRwho1ahT2/WLFirmLuLoh5YZ69eq5gnkkfvvtN9e1pWvXrq5LR8eOHd2+1EU2uDCmbitHHHFE2G2osKQuIpGumxvUhVVd/0qVKuUubB5d9N98803XzUYXHeUJHY/g/aO0io5BOBqXcswxx6T/rYuUvkP5VV1n1JVGeVZjUsi/scm/fqiLoLpE+QlYwqlbt647xgo6VOhQ1zDdTNWFSkFucN73m5+0b0U383CU1zTO+mD7Vl2y1aV279696YG4rq/BuL7GT/5UwUZ5x6twi+ba5kek17ZQOl8UoGhM/r///W9X6FIXQOX1atWqZfnbdNyzytOiQFn5UcF9cF4fOXKky8vqYpmbKGvE77kgGr88duxYFyyqG3akeVy/WWNHswpCg7uA+ykTxBPybv4qJ+eGcNf8SPdPXpfBkYdjoL0Lg8ZXeOMvVJjQCR0ug/Tv3z9srctjjz3matHk119/dZlGE0dI27ZtrVy5cq5GJlzBQxdW1bBNnDjRFYx1QkUr3LgTTaCiG4IKBGqxzK62UOkMN+lANPRdkdbgqzCnGi9vPIcuzhp7owu1V8DzfocfkawbDY3p8PanVzOqG68C2uCxPJ9++qm7GHk3G134FEgpT2jMspdWiSS9Oq5Kg2owjzrqKHvuuefIvzHMvwf7DblF+1rHQ7W7KoTp5qn9onNEx003vEjyk7eu9l9WdAPUJFBZ5SeNmdKYOOUHjelSYC9K07PPPusmm1HadJ6o8KXx2gq0lde8cdDkz0ObP9evX5/hN2gsXunSpV1LrMYnR3Nt83Pcorm2BbviiivcOLsXX3zRjZnTmDrReGhV2KhSKZS+Uz00DpanJTRfa6yfWruUZzXZjfJYbqCsET/nQuhvUPChljztQwVrChKyOh+CeXNO6DfrXPLbGuunTBBPyLv5q5wcDT/X/Ej3z6EugyPGAbS6UajlRhlQhQh1S8mqVk2TrTRu3DjT8uCJIVSY1YW4S5cu7m/v/7rQalB+6MRSohl0P/roIzejYE66YmgiiqzSpsLCwU5Uze6ri2JuULc43VD8UuH7rbfechNgKQAQ1ayphk1dm7wLg36HCoJ+RLKu10UluFusx1sW2q3r6aefdhcW7Vf9X92o1Q02tBZaeUK1bGrFkwoVKrj/6/dqZkLdrL39vm3bNve+X8qTCqBV66cLFfk3NvnXz2/ILSqcqFu1XtonX3/9tZvkQ8G08qpapyPJT14god+cVcChG2HovvXyk1r7VPBRIUQT8Hj53Lu+Srt27Vz+UKueWmJ0rdWkZcETR5E/D23+VFq9bvgqAKm1QBVv4QpDfq9tfo5btNe2YCp466VARy3GapFWwU6FagXUoT06lI/1u7I7JjoewekLpslwVCZQN/Hc6h5MWSN+zoXg36BJGHXN1L/qmhquV4N3PoTyWpX1m71KGz9BtJ8yQTwh7+avcvKhKs9Gun8iKYMjnz4H2uueollJP/zww/TZ8kIpc9WsWTPTy+uuqJu7Mrf+bdOmjaud00sXBbXQZHXSe11U1C1NGTda4dLmnSTqyqaMr24w4ei364TJqptdpDSdfVbdPMJR152///7bPvjgg/T9pppCzSytafY1Q6Zo2apVqzK1Gni0H71xcZGsq7FIwYWqYCr4SWhwoRpL7WPNWKzZCtVVReP8gh/Lou/Wb9PNWS0m3m/78ssv3fHwCmdereiSJUuyvOjr5q7jFMzLe8o75N/Y5V8/vyE3KFjQzMUe3UR1A1VgqpkxNUYp0vzkjRFVIJ4VzVwcum+9/KQuuGqtU8uAthmue9sff/zhZoHWWFYF/t5+CZ6Zlfx5aPOn0uqlW+PPVGjMqrDv59rm97hFe20TdW9U3vLeU0Fb+1Czuipd6vYZbjZ75Stdb5Vvs6L7ivKGV8kTLhBQAVd5J7dQ1oiPc0G8dCsdenqAzgVVAOrpA1mdD6Evr+JG21BFYrhHCYq6Hnsty37LBPGGvJt/ysmHqjwb6f6JpAyOfBxA6+auWjHVsnmPgYmUMrcyii6UKhR4L7UMqcuJtq8apHB0IVVtugrHGouT29RFRmnQs+fCTcSgG4gyvx4pklPqmvPdd99FNNW/9o1qq4L3m17aH6ox8y6qOlaqbdOzS0P9/vvvrpufdzGMZF2NwdO64YIIBQQKVLIbp6dWQXUn1IQ36v7nPVfVu1E8/vjjmX6baum8iUPUDVEXG91oQ8eyqKurlquGO6vHXOgiR/6NXf7NKxs3bnT7WIFDKPVA8MYTRZKflF9Uo60uduGeS6njrvNFz9LNjlrrVHjSs329/O8hf+bf/JnVtc2vnF7b1LtBBfZQXpfZrMbQ6fFraqkO9xzdzZs3uyEvegRWVl0MVaBUa5cK9tlVLkWCskZ8ngsK7pReBSfRPMJM4+nVcv3kk09mavVToKy85u0Lv2WCeEPezT/l5ENVno10/0RSBkdsRX0UGjZs6Gpe9Ly+cA979+gmr3EroZTJdBNX5laXHnX/Ch0DotahwYMHu3EKGu8SjmZwVBcVjQ/JbUqPuimpUKExb3oupi6A+j066XQSavIU7YfQsTqh1OLkdWdSDb23T7zn22k/6sH0mtHUD9209D2q/Q3tIqiTVRNNaNzHTTfd5G4wuvDqpFZNmGY0Vk2aJjfQg9l1LDVmTiJZVyex9o2CCBXkVDOqC4FmJ1YNmfZXuHE9wbzgQYGEuheqi6ryhAqP4Z7Tp5Y4jelRl0TdGDQeSJ9RmvR9usD9+eef7vt1E9a6WVH+I//GJv/mpR49ergClvLJwIED02ufdVNUrbxa6zyR5CftOx1jnSPars4N7RuNs1bhT8+BDjebcTDdKPWd2o7Xvcyjm75uugrCvf2tG7DS7hU4yZ/xmz/DXds8BztuEu21TfcD/U7Niq2unZo4T9dqtUzrGq7x81nNL6DCm1pDdE1UV0SNrVQrls4VPY/UC5Czc9FFF7lWN429Dvcc4EhR1ojfc0F5TcGZgmAFNepR41HAF66CR3lR1zblK/0m/VbtWx0D9bhRa6nyqa6NKr+I3zKBN7RGvzO0d4b2ifaNaFxyuH3njTfOLeTd/FNOVn48FOXZSPdPJGVwxFaOqjF0s9WFM6tuKaIZQMPReBV1qfjss8/cOuEypgboq1uECr9ZXRiU6VXrkxu1W+Eoo+uxHZrURwUatWKp9l0nsWr51XUj3IQQ4bpdqCAvmvhCLy/9OnE0QZDGyRzsBPWoRlaF6J49e4Z9XxdVTYOvcZ7du3d3NzfdnDSphQpG6qaiMTMXXHCBWzf4UTyRrKsxNrrA60LgzcCqbiyaEEnr+6ECl7pg6VjrAqqLvAKHcHSzVOuL8oQCaI0H1cPsFQjpoqMLpjdOSrODqtY3K/q8WlvIv3mff/OSAlM9rkzXKrVgaB8onboRKY8EF8oiyU8aC6t9qBmOdYNU7b7yhcayaX+rhcUP3ai1b72ZwT1eFy7VUOvlmTp1anoNPPkzvvNn8LUteKKf7I6bN8N7Tq5t2h/qZq0WKuV7td5pPyg9KsRlRwGyCpYa+617gCawU/Cuihy9/MyGr67cudnaT1kjfs8FlRE0zldPtVC+8SivhaN87XW5Vl7WPlce1xADdQVXEKJKHwUayu9qdfRbJvAe/RNuXVUc6fiJun7rFSrc0IacIu/mn3Jybpdndc1XpWOk+yeSMjhiJ0EPg47h9wMAAAAAcHiPgQYAAAAAoCA57Eai61EBGvuVHXWB0JjFeHU4/AYU3GOfV79B3Z2z6rIW3E3/+eefz9H34H/In8Dhk48Oh9+AgnncD4ffgPztsOvCrQl2NFYsOxp74E02EY8Oh9+Agnvs8+o3aEKttWvXZruOJgPRWCLkDvIncPjko8PhN6BgHvfD4TcgfzvsAmgAAAAAAA4FxkADAAAAAOADATQAAAAAAD4QQAMAAAAA4AMBNAAAAAAAPhBAAwCAsOrXr+9e69evz/Teiy++6N6bMGGCr239888/NmfOnCzff+2116xTp045Si8AAIcaATQAAMhSUlKSffTRR5mWz5s3zxISEnxv56GHHrJPPvkky/fPOusse+WVV6JOJwAAeYEAGgAAZKl58+aZAuhdu3bZt99+a40aNfK9nYM9NbNYsWJWvnz5qNMJAEBeIIAGAABZ6ty5sy1atMgFzZ6PP/7YBdYlS5bMsO6sWbNcN+ymTZvaZZddZsuXL3fL1c379ddfdy+vm7a6fz/22GPWqlUru/baazN14f7hhx+sZ8+e1rhxYzvjjDPs3XffzbPfDABAVgigAQBAlurVq2eVKlWyTz/9NH3ZBx98YKeddlqG9dRKPXHiRLvnnntcoNysWTO7/PLLbfv27XbllVfamWee6V7B3bTnz5/vxlLfeuutmcZL6zMNGzZ027rmmmvsjjvusF9++SUPfjEAAFkjgAYAAAdthfa6cScnJ9sXX3zhlgV79tlnXaB76qmn2jHHHGM33nijVa1a1d566y3XUq0u2qHdtC+++GKrXbu21a1bN8O21NpctmxZGzJkiHu/R48edsstt9i+ffvy6BcDABBe4SyWAwAAOAqWBw4caAcOHLCvvvrKtUofeeSRGdb5/fffbezYsfbII4+kL9u/f7+tWrUqy+0qwA5n5cqVbnx1YuL/6vn79u2bK78FAICcIIAGAADZUnds+eabb9zs26effnqmdVJTU+2uu+6y1q1bZ1heqlSpLLdbtGjRsMsLF6Z4AgCIT3ThBgAA2VJA26FDB9eNW+OWQ8c/S61atWzjxo1Ws2bN9NekSZPsu+++c+9H8sgrdQHXBGTBM3erS7i6iQMAEEsE0AAAwFc37pdfftl13a5evXqm99XFetq0afbGG2/Yn3/+6bpzz5kzx+rUqePeL168uK1bt842bdp00O8655xzbNu2bfbggw+6LuCaofvDDz+0U0455ZD8NgAA/KKPFAAAOKi2bdu6MdDhWp/lrLPOsr///tvGjx/v/tXEYE8++aRrTZbu3bvbgAED7Nxzz7UFCxZk+11lypSxp556ykaNGmXTp093AfvDDz/sZuUGACCWEgLB/aMAAAAAAEBYdOEGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAAB8IIAGAAAAAMAHAmgAAAAAAHwggAYAAAAAwAcCaAAAAAAAfCCABgAAAADABwJoAAAAAADs4P4fbSy5NZpeRvwAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_comparison(\n",
" df_prediction_compare,\n",
" title=\"Metadata Label Prediction Performance: scVI Model vs. PCA Baseline\",\n",
" ylabel=\"Score\",\n",
" palette=\"magma\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b5f7884f",
"metadata": {},
"source": [
"### Results Interpretation\n",
"\n",
"The benchmarking results provide insights into the performance of the scVI model compared to a PCA baseline across three tasks:\n",
"\n",
"1. **Clustering**: Metrics such as Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) indicate how well the model groups cells into clusters.\n",
"2. **Embedding**: Silhouette scores measure the quality of embeddings, reflecting how well-separated cell types are in the latent space.\n",
"3. **Cell Type Classification**: Accuracy and F1 scores evaluate the model's ability to predict cell types based on metadata.\n",
"\n",
"Higher scores for the scVI model compared to the PCA baseline suggest that the model captures biological variation more effectively."
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv_notebooks",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}