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Single-cell RNA sequencing

• In single-cell RNA sequencing, one measures gene
expression levels for individual cells.

• The gene expression levels for a single cell form a
cell expression vector with one element per gene,
which can be:

1. A raw read count (number of sequencing reads that mapped to the
gene).

2. A read count normalized in some way.
3. A read count transformed in some way -for example, via logarithmic

tranformations.

• The cell expression vectors for all the cells in an
experiment form an expression matrix.
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Clustering for single-cell RNA
sequencing

• The goal of clustering is to find groups (clusters) of
cells that have ”similar” expression vectors
according to some definition of similarity.

• In a grossly oversimplified picture of cell populations,
each cluster corresponds to a ”cell type”.

• In reality, things are much more complex, and
clustering is only the first step in the process of
extracting information from cell expression data.

• This presentation will not cover clustering. It will only
be concerned with the computational step
necessary to rapidly find pairs of cells that have
sufficiently ”similar” expression vectors.
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Scaling up

• We will call n the number of genes in an experiment.
• n is mostly determined by the species, (n ≈ 2× 104

for human cells).

• We will call N the number of cells in an experiment.
• Today, 102 . N . 105 typically, but experiment size

is increasing.
• For the Human Cell Atlas, N is expected to exceed
≈ 108.

• We need to be able to scale up the number of cells
but not the number of genes.
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Comparing cell expression vectors
Given two cells with expression vectors x and y , we
need a definition of the similarity between the two
cells.
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Cell similarity

• The most commonly used measure of cell similarity
is the Pearson Correlation Coefficient.

• For two cells with expression vectors x and y , it is
defined as the ratio:

r(x , y) =
covariance(x , y)

σ(x)σ(y)
,

where σ(x) and σ(y) are the standard deviations of
the components of x and y (including the zero
components!).

• For the cells shown in the previous slide, r ≈ 0.71.
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Interpretation of the Pearson Correlation
Coefficient as a cosine

• Define the averages of the components of x and y ,
x̄ and ȳ .

• Define shifted expression vectors with zero mean
and sum X = x − x̄ , Y = y − ȳ .

• It can be shown that the similarity between the two
cells, r(x , y), equals cos θ, where θ is the angle
between the X and Y vectors.
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Finding pairs of similar cells
• In most types of analysis, including clustering, we

need to find pairs of cells that have high similarity.

• The simplest and most common way to do this is to
directly compute the similarity for all possible pairs
of cells, and store the pairs that have similarity
above the desired threshold.

• The computation for each pair can be performed in
time proportional to the total number of non-zero
expression vector entries for the two cells.

• With optimized C++ code and using sparse
representations for the cell expression vectors, this
typically takes ≈ 20µs per pair.

• The number of pairs to be considered increases with
the square of the number of cells, so the total time
required is ≈ 10s for 1000 cells (good), but ≈ 4
months for 106 cells (bad).
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Locality-Sensitive Hashing (LSH)

• LSH is a probabilistic approach to finding pairs of
similar objects in a large set.

• It can be much faster than direct methods, but it
does not guarantee that all pairs of similar objects
will be found.

• However, the probability that a pair will be found is a
non-decreasing function of the similarity between
the items in the pair.

• I will explain later the reason for the name
Locality-Sensitive Hashing.
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Locality-Sensitive Hashing history and
references

• Originally developed for the Alta Vista search
engine, for the special case of Jaccard similarity
(MinHash algorithm), by Broder (1997),
Compression and Complexity of Sequences:
Proceedings.

• Mathematical foundation by Indyk and Motwani
(1998), Proceedings of 30th Symposium on Theory
of Computing. This work also introduced the name
Locality-Sensitive Hashing.

• Since then used in a variety of applications.
• An excellent and intuitive presentation is in Chapter

3 of Leskovec, Rajaraman, and Ullman (2010),
”Mining of Massive DataSets”, Cambridge University
Press, also freely available on the Internet by
arrangement with the publisher (see especially
sections 3.5.4 and 3.7.2).
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Locality-Sensitive Hashing for the
cosine similarity

• Although a general mathematical theory for LSH
exists, the specifics are different depending on
which distance/similarity measure is considered.

• The original and most used formulation is the one
for Jaccard similarity (MinHash algorithm).

• In this presentation, I will focus on the case where
our items are vectors in a Cartesian n-dimensional
space and the relevant similarity measure is the
cosine of the angle between two of our vectors X
and Y .

• This is the case of interest to us, where X and Y are
the shifted expression vectors of two cells.

11 / 40
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A key observation
• Consider two vectors X and Y in our n-dimensional

space at an angle θ. For simplicity we can visualize
our vectors as starting at the origin.

• Randomly pick a hyperplane through the origin in
our n-dimensional space.

• What is the probability that our vectors X and Y lie
on the same side of the hyperplane?

• A bit of reflection reveals that the probability is
p(θ) = 1− θ

π , assuming θ is measured in radians.
• For example, if X = Y , θ = 0, the two vectors

certainly lie on the same side of the hyperplane, and
in fact the above formula gives p = 1.

• Conversely, if X = −Y , θ = π, the two vectors never
lie on the same side of the hyperplane, and in fact
the above formula gives p = 0.
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Not convinced?
The following figure from the book referenced above
might help:

13 / 40
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Many random hyperplanes

• What happens if we repeat this using m random
hyperplanes?

• For each of the hyperplanes, the two vectors are on
the same side with probability p(θ) = 1− θ

π .
• Call k the number of hyperplanes that have the two

vectors on the same side.
• Each of the random hyperplanes is picked

independently, so k has a binomial distribution with
m tries and probability p = p(θ):

P(k) =

(
m
k

)
pk(1− p)m−k

14 / 40
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An unbiased estimator of θ

• The mean of the binomial distribution gives the
expected value of k:

k̄ = pm =

(
1− θ

π

)
m

• This gives an unbiased estimator for θ̄:

θ̄ = π

(
1− k

m

)
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How accurate is the estimator?
• The standard deviation of the binomial distribution is

σ(k) =
√

mp(1− p)

• Therefore the standard deviation of the θ estimate is

σ(θ̄) =
π

m

√
mp(1− p) = π

√
p(1− p)

m

• The estimator becomes better as m increases.
• We can make the estimator as accurate as we like,

at the cost of increasing m.
• However the error goes down only as O(1/

√
m).
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The estimator for r (x , y) = cos θ

• We have an estimator for θ, but we need an
estimator for the similarity between two cells
r(x , y) = cos θ.

• We can use r̄ = cosθ̄, but a non-linear
transformation is involved, and therefore:

• The r̄ estimator is not unbiased.
• The computation of its standard deviation is not straighforward.

• However, when m→∞:
• The estimator r̄ becomes unbiased.
• Its standard deviation is given by

σ(r̄) =

∣∣∣∣ dr
dθ

∣∣∣∣σ(θ̄) = π sin θ

√
p(1− p)

m
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Properties of the r̄ estimator

• It is unbiased for large m.
• Its standard deviation is independent of the number

of genes n and decreases when the number of
hyperplanes m increases.

• Its distribution becomes Gaussian at large m.
• Its standard deviation goes to zero for high similarity,

when p → 1, θ → 0.
• For a given m, its standard deviation is highest for

p = 1/2, when θ = π/2, the similarity is zero, and
the standard deviation becomes π/(2

√
m).

• For example, for m = 1024, the maximum standard
deviation is π/64 ≈ 0.049
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How well does it work in practice?

• The next slide shows a comparison of r(x , y)
computed exactly with the result of the estimator,
using LSH with m = 1024 random hyperplanes.

• Scatter plot of ≈ 6× 105 cell pairs, randomly
downsampled from a run with ≈ 4× 103 cells (data
courtesy of S. Darmanis, publication pending).

• Horizontal axis: exact cell similarity r(x , y).
• Vertical axis: value computed using the r̄ estimator.
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Similarity computation: estimated
versus exact, m = 1024
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Estimator bias, m = 1024
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Bias

Similarity

• The theory only guarantees a zero-bias estimator
when m→∞.

• For m = 1024 the bias is negligible for all practical
purposes.
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Estimator standard deviation, m = 1024
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Similarity

• The actual standard deviation of the estimator (blue
points) is in good agreement with the theoretical
prediction (red line).

• The error incurred in using the estimator for
m = 1024 is acceptable for clustering and other
analyses.
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”All pairs” algorithm for computing cell
similarities using LSH

1. Randomly pick m random vectors in n-dimensional
space, each defining a hyperplane orthogonal to it.

2. For each cell, compute the sign of the scalar product
of the shifted expression vector with each of the m
random vectors and store it as a bit vector (the cell
LSH signature).

3. For each pair of cells, count the number k of
signature bits that are identical for the two cells. This
gives the number of hyperplanes k , out of the m, for
which the two cells are on the same side of the
hyperplane. Given k , we can estimate the similarity
for the pair as r̄ = cos θ̄, θ̄ = π(1− k/m).
This algorithm still has complexity O(N2), because
step 3 is looping over all pairs. We will see later how
we can do better, again using LSH.
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Efficient implementation of step 3
Using hardware POPCOUNT instruction (count
number of set bits), each loop iteration processes 64
bits:
f o r ( u i n t 6 4 t i =0; i<wordCount ; i ++)

mismatchCount += b u i l t i n p o p c o u n t l l ( x [ i ] ˆ y [ i ] ) ;

Using ”g++ -O3 -msse4.2”, the loop compiles as:
. L3 : movq (%rd i ,%r8 , 8 ) , %rcx

xorq (% r s i ,%r8 , 8 ) , %rcx
addq $1 , %r8
popcntq %rcx , %rcx
addq %rcx , %rax
cmpq %r8 , %rdx
jne . L3

• With data in cache, the entire loop runs in
≈ 13ns ≈ 30 cycles for m = 1024, wordCount = 16.

• ≈ 2 cycles per iteration.
• This is ≈ 1500 times faster than direct computation.
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Benchmarks, m = 1024

Number of cells 3.6× 103 5.3× 104 3.3× 105 1.3× 106

Exact computation 127

LSH, total 6.4 111 910 13482

LSH signatures 6.3 95 289 1660

Loop over pairs 0.08 16 621 11822

• Elapsed times in seconds on a Lenovo ThinkPad
laptop with 2.70GHz Intel R© Core

TM
i7-6820HQ

processor, single-threaded.
• Benchmark done excluding time to store similarities,

which varies depending on criteria used for storing
and typically adds ≈ 5− 10%.
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Performance model, m = 1024

Benchmark results are consistent with this simple
performance model:

Time for exact similarity computation
(per pair, for 2500 average expressed
genes)

20µs O(N2)

Time to compute LSH signature (per
cell, normalized to 2500 expressed
genes)

1.7 ms O(N)

Time for LSH similarity computation
(per pair, excluding storing)

13 ns O(N2)
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Performance summary, m = 1024
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Performance model suggestions

• At N . 105, performance of the all pairs LSH
algorithm is dominated by the linear term (step 2).

• At larger N, it approaches its asymptotic scaling
O(N2) but ≈ 1500 times faster than direct
computation.

• Without using parallelism, the all pairs LSH
algorithm can do ≈ 104 cells interactively, ≈ 3× 106

overnight.
• Performance of the full LSH algorithm (see final

portion of this presentation) will be somewhere
between the green line (O(N)) and the red line
(O(N2) for large N).

• The full LSH algorithm will enable processing the
large number of cells expected for the Human Cell
Atlas, when taking advantage of parallelism.
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Interpretation as dimensionality
reduction

• We are using the similarity between cell signatures
to approximate the exact similarity.

• This is a form of dimensionality reduction: instead of
representing each cell using its expression vector (n
dimensions, continuous variables) we represent it
using its signature (m dimensions, boolean
variables).

• Each signature value corresponds to a spherical
polygon on the unit hypersphere in n-dimensional
space.

• We could do clustering in signature space, and
there may be some advantages to that. However I
have not yet explored this possibility, and for now I
am only using LSH to speed up the calculation of
cell similarities.
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Can we do better than O(N2)?

• Yes, we can, by exploiting the discrete nature of the
signature vectors.

• This is where LSH realizes its full potential.
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A bad hash function

• Pick a subset of q bits of the cell signatures.

• These bits form an integer h(x) which is a function
of the cell expression vector x , and we can therefore
consider it a hash function.

• This hash function has properties that are extremely
undesirable for ordinary hash functions, because it
is prone to collisions for cells with high similarity.

• The reason is that, if two cells are very similar
(r(x , y) is close to 1), there is high probability that
h(x) = h(y). We will compute this collision
probability, which is an increasing function of r(x , y),
in one of the next slides.
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A locality-sensitive hash function

• This property is actually very useful in our context: if
we create a hash table using such a hash function,
cells that are very similar are likely to experience a
collision and therefore end up in the same bucket.

• If we want to find highly similar pairs, we can search
over pairs that are in the same bucket, rather than
over all possible pairs.

• This is the basic idea of LSH, from which the name
(because the hash function is likely not to change
under a small local perturbation of the cell
expression vector).

• We need to make this more quantitative.
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expression vector).

• We need to make this more quantitative.
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Collision probability
• Given two cells with similarity r(x , y) = cos θ, where
θ is the angle between the shifted expression
vectors, the collision probability is the probability
that the q bits of the two cells are identical.

• The probability that a single bit is identical equals
the probability that the two cells are on the same
side of the corresponding hyperplane, 1− θ

π .
• The hyperplanes corresponding to the q bits are all

random and uncorrelated, and therefore the
probability that all the q bits are identical is

Pcollision(θ) =

(
1− θ

π

)q
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Collision probability increases with cell
similarity
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Iterate over sets of q bits
• We can iterate the process Q times, using Q

mutually disjoint subsets of q bits out of the total m .

• What is the probability that a pair of cells appears in
the same bucket at least one of the Q times?

• Probability the two cells are not in the same bucket in a given
iteration:

Pa(θ) = 1− Pcollision(θ) = 1−
(

1− θ

π

)q

• Probability the two cells are not in the same bucket in all Q iterations:

Pb(θ) = PQ
a (θ) =

[
1−

(
1− θ

π

)q]Q

• Probability the two cells are in the same bucket at least one of the Q
times:

Pc(θ) = 1− Pb(θ) = 1−
[
1−

(
1− θ

π

)q]Q
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Pc versus cell similarity
• For selected values of q, Q such that qQ = 1024.
• Cell pairs with high similarity are virtually certain to

be the same bucket at least once.
• We can tune q and Q depending on what our

threshold for ”interesting” cell similarity is.
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Full LSH algorithm to find cell pairs with
high similarities

1. Randomly pick m random vectors in n-dimensional
space, each defining a hyperplane orthogonal to it.

2. Compute all the cell signatures.
3. Iterate Q times, each time using a different subset of

q signature bits as the hash function:
• Create a hash table using the current hash function.
• Iterate over all cell pairs in each bucket. For each pair use the r̄

estimator to compute an approximate similarity. If the similarity is
greater than the desired threshold, store that pair.

• Steps 1 and 2 are the same as for the preliminary
LSH algorithm that iterates over all pairs.

• But in step 3 we are no longer iterating over all pairs.
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Complexity of the full LSH algorithm

• Complexity analysis of the full LSH algorithm is not
possible as it is heavily dependent on the amount of
clustering present.

• In the limit of extreme clustering, all cells end up in
the same bucket and we saved nothing.

• But in general, the number of cell pairs that will have
to be considered will be a small fraction of the total,
assuming judicious choices of q and Q are made,
and that special treatment is given to buckets with
unreasonably large numbers of cells.

• Work is in progress. Actual performance in practice
will be somewhere between O(N) and O(N2). It is
reasonable to expect O(N log N).
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Incremental version of the LSH
algorithm

• If new cells are added to the system, can we update
the list of similar cell pairs without redoing the entire
computation?

• We can, if we keep the hash tables created at each
of the Q iterations. This is a small amount of
information compared to the cell expression vectors.

• When we add a new cell, we compute its signature,
and update each of the Q hash tables. At the same
time, we consider all cell pairs consisting of the
newly added cell and one of the cells that are in the
same bucket in at least one of the Q iterations.

• This can support incremental clustering
calculations, assuming that the clustering algorithm
used also supports incremental update.
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